scholarly journals Review of Triplet State Formation of Chromophoric Dissolved Organic Matter in Atmospheric Aerosols: Characteristics and Implications

2020 ◽  
Author(s):  
Anonymous
2020 ◽  
Author(s):  
Qingcai Chen ◽  
Zhen Mu ◽  
Li Xu ◽  
Mamin Wang ◽  
Jin Wang ◽  
...  

Abstract. There is chromophore dissolved organic matter (CDOM) in the atmosphere, which may form triplet-state chromophoric dissolved organic matter (3CDOM*) to further driving the formation of reactive oxygen species (ROS) under solar illumination. 3CDOM* contributes significantly to aerosol photochemistry and plays an important role in aerosol aging. We quantify the ability to form 3CDOM* and drive the formation of ROS by primary, secondary and ambient aerosols. Biomass combustion has the strongest 3CDOM* generation capacity and the weakest vehicle emission capacity. Ambient aerosol has a stronger ability to generate 3CDOM* in winter than in summer. Most of the triplet states generation conform to first-order reaction, but some of them do not due to the different quenching mechanism. The structural-activity relationship between the CDOM type and the 3CDOM* formation capacity shows that the two types of CDOM identified, which similar to the nitrogen-containing chromophores contributed 88 % to the formation of 3CDOM*. The estimated formation rate of 3CDOM* can reach ~ 100 μmol m−3 h−1 in the atmosphere in Xi'an, China, which is approximately one hundred thousand-times the hydroxyl radical (•OH) production. This study verified that 3CDOM* drives at least 30 % of the singlet oxygen (1O2) and 31 % of the •OH formed by aerosols using the spin trapping and electron paramagnetic resonance technique.


2020 ◽  
Vol 8 (11) ◽  
pp. 911
Author(s):  
Francesca Iuculano ◽  
Carlos M. Duarte ◽  
Jaime Otero ◽  
Xosé Antón Álvarez-Salgado ◽  
Susana Agustí

Posidonia oceanica is a well-recognized source of dissolved organic matter (DOM) derived from exudation and leaching of seagrass leaves, but little is known about its impact on the chromophoric fraction of DOM (CDOM). In this study, we monitored for two years the optical properties of CDOM in two contrasting sites in the Mallorca Coast (Balearic Islands). One site was a rocky shore free of seagrass meadows, and the second site was characterized by the accumulation of non-living seagrass material in the form of banquettes. On average, the integrated color over the 250–600 nm range was almost 6-fold higher in the beach compared with the rocky shore. Furthermore, the shapes of the CDOM spectra in the two sites were also different. A short incubation experiment suggested that the spectral differences were due to leaching from P. oceanica leaf decomposition. Furthermore, occasionally the spectra of P. oceanica was distorted by a marked absorption increase at wavelength < 265 nm, presumably related to the release of hydrogen sulfide (HS−) associated with the anaerobic decomposition of seagrass leaves within the banquettes. Our results provide the first evidence that P. oceanica is a source of CDOM to the surrounding waters.


Sign in / Sign up

Export Citation Format

Share Document