scholarly journals Properties of biomass burning aerosol mixtures derived at fine temporal and spatial scales from Raman lidar measurements: Part I optical properties

Author(s):  
Lucja Janicka ◽  
Iwona S. Stachlewska

Abstract. The analysis of the aerosol optical properties derived at fine temporal and spatial scales were performed based on measurements obtained during heat wave event in vicinity of a cold weather front in Warsaw on August 9th–11th, 2015. The signals collected by the PollyXT-UW lidar allowed for the calculation of 23 sets of so-called 3β + 2α + 2δ + wv profiles averaged by 30-minutes periods during 2 nights. The total number of 11 different aerosol types and aerosol mixtures were identified with reference to properties within 116 sub-layers in the profiles and were characterized by the mean values. The statistical sample of various optical properties being in agreement for consecutive profiles allowed to assess the spatio-temporal extent of aerosol/mixture types. The mean lidar ratio values of 53–73 sr (355 nm) and 31–45 sr (532 nm) in the layers dominated by the anthropogenic pollution were found. For the layers dominated by the biomass burning aerosol (fresh, moderately fresh, moderately aged) mean lidar ratio was of 69–114 sr (355 nm) and 57–85 sr (532 nm). The colour ratio of lidar ratio (532 / 355) higher than 1, characteristic for aged biomass burning aerosol, was found only in one scattered layer, accompanying with low value of extinction related Ångström exponent of 0.60 ± 0.32 and low particle depolarization ratio. The maximum of the particle depolarization ratio of 4.8–5.0 % at 532 nm were observed in a layer likely contaminated with pollen and in a layer dominated by fresh biomass burning aerosol. This study provides an excellent data set for exploration of separation algorithms, aerosol typing algorithms and microphysical inversion.

2020 ◽  
Vol 237 ◽  
pp. 08016
Author(s):  
Christina-Anna Papanikolaou ◽  
Elina Giannakaki ◽  
Alex Papayannis ◽  
Maria Tombrou ◽  
Maria Mylonaki ◽  
...  

A long-lasting biomass burning event affected Europe from 27 August to 3 September 2018. The biomass burning aerosol layers were observed with ground- and space-based lidars in heights ranged between 2-7 km (a.s.l.). The mean backscatter coefficient for the ground-based stations ranged between 0.29 and 1.51 Mm-1sr-1, while the CALIPSO retrieved values ranged between 0.43 and 1.83 Mm-1sr-1. Moreover, the mean Ångström exponent (AEb) values, relevant to backscatter, ranged from 0.83 to 1.04 for the aforementioned lidar stations. At the same time, the mean AEb values obtained from CALIPSO ranged between 0.17 and 1.89. The mean particle depolarization ratio ranged between 0.037 and 0.080.


2020 ◽  
Author(s):  
Julian Hofer ◽  
Albert Ansmann ◽  
Dietrich Althausen ◽  
Ronny Engelmann ◽  
Holger Baars ◽  
...  

Abstract. For the first time, a dense data set of particle extinction-to-backscatter ratios (lidar ratios), linear depolarization ratios, and backscatter- and extinction-related Ångström exponents for a Central Asian site are presented. The observations were performed with a continuously running multiwavelength polarization Raman lidar at Dushanbe, Tajikistan, during an 18-month campaign (March 2015 to August 2016). The presented seasonally resolved observations fill an important gap in the data base of aerosol optical properties used in aerosol typing efforts with spaceborne lidars and ground-based lidar networks. Lidar ratios and depolarization ratios are also basic input parameters in spaceborne lidar data analyses and in efforts to harmonize long-term observations with different space lidar systems operated either at 355 or 532 nm. As a general result, the found optical properties reflect the large range of occurring aerosol mixtures consisting of long-range-transported dust (from the Middle East and the Sahara), regional desert, soil, and salt dust, and anthropogenic pollution. The full range from highly polluted to pure dust situations could be observed. Typical dust depolarization ratios of 0.23–0.29 (355 nm) and 0.30–0.35 (532 nm) were observed. In contrast, comparably low lidar ratios were found. Dust lidar ratios at 532 nm accumulated around 35–40 sr and were even lower for regional background dust conditions (20–30 sr). The reason for these low values may be partly related to the direct emission and emission of re-suspended salt dust (initially originated from numerous desiccating lakes and the Aralkum desert). Detailed correlation studies (e.g., lidar ratio vs. depolarization ratios and Ångström exponent vs. lidar ratio and vs. depolarization ratio) are presented to illuminate the complex relationships between the observed optical properties and to identify the contributions of anthropogenic haze, dust, and background aerosol to the overall aerosol mixtures found within the 18-month campaign.


2015 ◽  
Vol 15 (3) ◽  
pp. 3381-3413 ◽  
Author(s):  
S.-K. Shin ◽  
D. Müller ◽  
K. H. Lee ◽  
D. Shin ◽  
Y. J. Kim ◽  
...  

Abstract. We use five years (2009–2013) of multiwavelength Raman lidar measurements at Gwangju, Korea (35.10° N, 126.53° E) for the identification of changes of optical properties of East Asian dust in dependence of its transport path over China. Profiles of backscatter and extinction coefficients, lidar ratios, and backscatter-related Ångström exponents (wavelength pair 355/532 nm) were measured at Gwangju. Linear particle depolarization ratios were used to identify East Asian dust layers. We used backward trajectory modelling to identify the pathway and the vertical position of dust-laden air masses over China during long-range transport. Most cases of Asian dust events can be described by the emission of dust in desert areas and subsequent transport over highly polluted regions of China. The Asian dust plumes could be categorized into two classes according to the height above ground in which these plumes were transported: (I) the dust layers passed over China at high altitude levels until arrival over Gwangju, and (II) the Asian dust layers were transported near the surface and the lower troposphere over industrialized areas before they arrived over Gwangju. We find that the optical characteristics of these mixed Asian dust layers over Gwangju differ in dependence of their vertical position above ground over China and the change of height above ground during transport. The mean linear particle depolarization ratio was 0.21 ± 0.06 (at 532 nm), the mean lidar ratios were 52 ± 7 sr at 355 nm and 53 ± 8 sr at 532 nm, and the mean Ångström exponent was 0.74 ± 0.31 in case I. In contrast, plumes transported at lower altitudes (case II) showed low depolarization ratios, and higher lidar ratio and Ångström exponents. The mean linear particle depolarization ratio was 0.13 ± 0.04, the mean lidar ratios were 63 ± 9 sr at 355 nm and 62 ± 8 sr at 532 nm, respectively, and the mean Ångström exponent was 0.98 ± 0.51. These numbers show that the optical characteristics of mixed Asian plumes are more similar to optical characteristics of urban pollution. We find a decrease of the linear depolarization ratio of the mixed dust/pollution plume in dependence of transport time if the pollution layer travelled over China at low heights, i.e., below approximately 3 km above ground. In contrast we do not find such a trend if the dust plumes travelled at heights above 4 km over China. We need a longer time series of lidar measurements in order to determine the change of optical properties of dust with transport time in a quantitative way.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5442
Author(s):  
Christina-Anna Papanikolaou ◽  
Elina Giannakaki ◽  
Alexandros Papayannis ◽  
Maria Mylonaki ◽  
Ourania Soupiona

The aim of this paper is to study the spatio-temporal evolution of a long-lasting Canadian biomass burning event that affected Europe in August 2018. The event produced biomass burning aerosol layers which were observed during their transport from Canada to Europe from the 16 to the 26 August 2018 using active remote sensing data from the space-borne system Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). The total number of aerosol layers detected was 745 of which 42% were identified as pure biomass burning. The remaining 58% were attributed to smoke mixed with: polluted dust (34%), clean continental (10%), polluted continental (5%), desert dust (6%) or marine aerosols (3%). In this study, smoke layers, pure and mixed ones, were observed by the CALIPSO satellite from 0.8 and up to 9.6 km height above mean sea level (amsl.). The mean altitude of these layers was found between 2.1 and 5.2 km amsl. The Ångström exponent, relevant to the aerosol backscatter coefficient (532/1064 nm), ranged between 0.9 and 1.5, indicating aerosols of different sizes. The mean linear particle depolarization ratio at 532 nm for pure biomass burning aerosols was found equal to 0.05 ± 0.04, indicating near spherical aerosols. We also observed that, in case of no aerosol mixing, the sphericity of pure smoke aerosols does not change during the air mass transportation (0.05–0.06). On the contrary, when the smoke is mixed with dessert dust the mean linear particle depolarization ratio may reach values up to 0.20 ± 0.04, especially close to the African continent (Region 4).


2003 ◽  
Vol 108 (D13) ◽  
pp. n/a-n/a ◽  
Author(s):  
Jim M. Haywood ◽  
Simon R. Osborne ◽  
Pete N. Francis ◽  
Andreas Keil ◽  
Paola Formenti ◽  
...  

2015 ◽  
Vol 15 (23) ◽  
pp. 35237-35276
Author(s):  
E. Giannakaki ◽  
P. G. van Zyl ◽  
D. Müller ◽  
D. Balis ◽  
M. Komppula

Abstract. Optical and microphysical properties of different aerosol types over South Africa measured with a multi-wavelength polarization Raman lidar are presented. This study could assist in bridging existing gaps relating to aerosol properties over South Africa, since limited long-term data of this type is available for this region. The observations were performed under the framework of the EUCAARI campaign in Elandsfontein. The multi-wavelength PollyXT Raman lidar system was used to determine vertical profiles of the aerosol optical properties, i.e. extinction and backscatter coefficients, Ångström exponents, lidar ratio and depolarization ratio. The mean microphysical aerosol proper ties, i.e. effective radius and single scattering, albedo were retrieved with an advanced inversion algorithm. Clear differences were observed for the intensive optical properties of atmospheric layers of biomass burning and urban/industrial aerosols. Our results reveal a wide range of optical and microphysical parameters for biomass burning aerosols. This indicates probable mixing of biomass burning aerosols with desert dust particles, as well as the possible continuous influence of urban/industrial aerosol load in the region. The lidar ratio at 355 nm, the linear particle depolarization ratio at 355 nm and the extinction-related Ångström exponent from 355 to 532 nm were 52 ± 7 sr; 0.9 ± 0.4 % and 2.3 ± 0.5, respectively for urban/industrial aerosols, while these values were 92 ± 10 sr; 3.2 ± 1.3 %; 2.0 ± 0.4 respectively for biomass burning aerosols layers. Biomass burning particles are larger and slightly less absorbing compared to urban/industrial aerosols. The particle effective radius were found to be 0.10 ± 0.03, 0.17 ± 0.04 and 0.13 ± 0.03 μm for urban/industrial, biomass burning, and mixed biomass burning and desert dust aerosols, respectively, while the single scattering albedo at 532 nm were 0.87 ± 0.06, 0.90 ± 0.06, and 0.88 ± 0.07 (at 532 nm), respectively for these three types of aerosols. Our results were within the same range of previously reported values.


2020 ◽  
Vol 20 (15) ◽  
pp. 9265-9280 ◽  
Author(s):  
Julian Hofer ◽  
Albert Ansmann ◽  
Dietrich Althausen ◽  
Ronny Engelmann ◽  
Holger Baars ◽  
...  

Abstract. For the first time, a dense data set of particle extinction-to-backscatter ratios (lidar ratios), linear depolarization ratios, and backscatter- and extinction-related Ångström exponents for a Central Asian site are presented. The observations were performed with a continuously running multiwavelength polarization Raman lidar at Dushanbe, Tajikistan, during an 18-month campaign (March 2015 to August 2016). The presented seasonally resolved observations fill an important gap in the database of aerosol optical properties used in aerosol typing efforts with spaceborne lidars and ground-based lidar networks. Lidar ratios and depolarization ratios are also basic input parameters in spaceborne lidar data analyses and in efforts to harmonize long-term observations with different space lidar systems operated at either 355 or 532 nm. As a general result, the found optical properties reflect the large range of occurring aerosol mixtures consisting of long-range-transported dust (from the Middle East and the Sahara), regional desert, soil, and salt dust, and anthropogenic pollution. The full range from highly polluted to pure dust situations could be observed. Typical dust depolarization ratios of 0.23–0.29 (355 nm) and 0.30–0.35 (532 nm) were observed. In contrast, comparably low lidar ratios were found. Dust lidar ratios at 532 nm accumulated around 35–40 sr and were even lower for regional background dust conditions (20–30 sr). Detailed correlation studies (e.g., lidar ratio vs. depolarization ratios, Ångström exponent vs. lidar ratio and vs. depolarization ratio) are presented to illuminate the complex relationships between the observed optical properties and to identify the contributions of anthropogenic haze, dust, and background aerosol to the overall aerosol mixtures found within the 18-month campaign. The observation of 532 nm lidar ratios (<25 sr) and depolarization ratios (around 15 %–20 %) in layers with very low particle extinction coefficient (<30 sr) suggests that direct emission and emission of resuspended salt dust (initially originated from numerous desiccating lakes and the Aralkum desert) have a sensitive impact on the aerosol background optical properties over Dushanbe.


2018 ◽  
Vol 176 ◽  
pp. 05022
Author(s):  
Maria Mylonaki ◽  
Alexandros Papayannis ◽  
Rodanthi Mamouri ◽  
Athina Argyrouli ◽  
Panagiotis Kokkalis ◽  
...  

The EOLE multi-wavelength aerosol Ramandepolarization lidar, and the AIAS depolarization lidar, in synergy with a sun photometer (CIMEL), were used, in the period 2007-2016, to provide the vertical profiles of the aerosol optical properties over Athens, Greece. More than 30 biomass burning events (fresh and aged smoke particles) were observed, with smoke layers between 1.5 up to 4-5 km height, while their duration ranged from 1-3 days. Lidar ratio (LR) values ranged from 40-105 sr (at 355 nm) and from 40-100 sr (at 532 nm), while the linear particle depolarization ratio (LPDR) at both 355 and 532 nm, remained <7%. The extinction-related Ångström exponent (AEa) at 355 nm/532 nm) ranged from 0.3 to 2.1. Additionally, a case of a near-range transport of biomass burning aerosols arriving over Athens up to 4 km height, between 27 and 28 June 2016, was studied. For this case, we found LRs of the order of 70±5 sr (355 nm) and 65±15 sr (532 nm) and AEa(355 nm/532 nm) around 1.


Sign in / Sign up

Export Citation Format

Share Document