scholarly journals Canadian Biomass Burning Aerosol Properties Modification during a Long-Ranged Event on August 2018

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5442
Author(s):  
Christina-Anna Papanikolaou ◽  
Elina Giannakaki ◽  
Alexandros Papayannis ◽  
Maria Mylonaki ◽  
Ourania Soupiona

The aim of this paper is to study the spatio-temporal evolution of a long-lasting Canadian biomass burning event that affected Europe in August 2018. The event produced biomass burning aerosol layers which were observed during their transport from Canada to Europe from the 16 to the 26 August 2018 using active remote sensing data from the space-borne system Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). The total number of aerosol layers detected was 745 of which 42% were identified as pure biomass burning. The remaining 58% were attributed to smoke mixed with: polluted dust (34%), clean continental (10%), polluted continental (5%), desert dust (6%) or marine aerosols (3%). In this study, smoke layers, pure and mixed ones, were observed by the CALIPSO satellite from 0.8 and up to 9.6 km height above mean sea level (amsl.). The mean altitude of these layers was found between 2.1 and 5.2 km amsl. The Ångström exponent, relevant to the aerosol backscatter coefficient (532/1064 nm), ranged between 0.9 and 1.5, indicating aerosols of different sizes. The mean linear particle depolarization ratio at 532 nm for pure biomass burning aerosols was found equal to 0.05 ± 0.04, indicating near spherical aerosols. We also observed that, in case of no aerosol mixing, the sphericity of pure smoke aerosols does not change during the air mass transportation (0.05–0.06). On the contrary, when the smoke is mixed with dessert dust the mean linear particle depolarization ratio may reach values up to 0.20 ± 0.04, especially close to the African continent (Region 4).

2020 ◽  
Vol 237 ◽  
pp. 08016
Author(s):  
Christina-Anna Papanikolaou ◽  
Elina Giannakaki ◽  
Alex Papayannis ◽  
Maria Tombrou ◽  
Maria Mylonaki ◽  
...  

A long-lasting biomass burning event affected Europe from 27 August to 3 September 2018. The biomass burning aerosol layers were observed with ground- and space-based lidars in heights ranged between 2-7 km (a.s.l.). The mean backscatter coefficient for the ground-based stations ranged between 0.29 and 1.51 Mm-1sr-1, while the CALIPSO retrieved values ranged between 0.43 and 1.83 Mm-1sr-1. Moreover, the mean Ångström exponent (AEb) values, relevant to backscatter, ranged from 0.83 to 1.04 for the aforementioned lidar stations. At the same time, the mean AEb values obtained from CALIPSO ranged between 0.17 and 1.89. The mean particle depolarization ratio ranged between 0.037 and 0.080.


2020 ◽  
Vol 237 ◽  
pp. 05005
Author(s):  
Mariana Adam ◽  
Doina Nicolae ◽  
Livio Belegante ◽  
Iwona S. Stachlewska ◽  
Dominika Szczepanik ◽  
...  

The biomass burning events are analyzed using the EARLINET-ACTRIS atmospheric profiling of aerosols using lidars. The period of 2008-2017 was chosen to analyze all the events assigned in the EARLINET database under Forest Fire category. A number of fourteen stations were considered. The data provided, ranged from complete data sets (backscatter, extinction and particle linear depolarization ratio) to single profiles (backscatter coefficient). A thorough quality control was performed. Smoke layers geometry was evaluated and the mean properties within each layer were computed. The Hysplit backward-trajectory technique and the FIRMS fire database were used to double check the source of each layer. Discussions were made under the following scenarios: fire events seen by two stations, long range transport from North America, and geographical clusters.


2019 ◽  
Author(s):  
Lucja Janicka ◽  
Iwona S. Stachlewska

Abstract. The analysis of the aerosol optical properties derived at fine temporal and spatial scales were performed based on measurements obtained during heat wave event in vicinity of a cold weather front in Warsaw on August 9th–11th, 2015. The signals collected by the PollyXT-UW lidar allowed for the calculation of 23 sets of so-called 3β + 2α + 2δ + wv profiles averaged by 30-minutes periods during 2 nights. The total number of 11 different aerosol types and aerosol mixtures were identified with reference to properties within 116 sub-layers in the profiles and were characterized by the mean values. The statistical sample of various optical properties being in agreement for consecutive profiles allowed to assess the spatio-temporal extent of aerosol/mixture types. The mean lidar ratio values of 53–73 sr (355 nm) and 31–45 sr (532 nm) in the layers dominated by the anthropogenic pollution were found. For the layers dominated by the biomass burning aerosol (fresh, moderately fresh, moderately aged) mean lidar ratio was of 69–114 sr (355 nm) and 57–85 sr (532 nm). The colour ratio of lidar ratio (532 / 355) higher than 1, characteristic for aged biomass burning aerosol, was found only in one scattered layer, accompanying with low value of extinction related Ångström exponent of 0.60 ± 0.32 and low particle depolarization ratio. The maximum of the particle depolarization ratio of 4.8–5.0 % at 532 nm were observed in a layer likely contaminated with pollen and in a layer dominated by fresh biomass burning aerosol. This study provides an excellent data set for exploration of separation algorithms, aerosol typing algorithms and microphysical inversion.


2017 ◽  
Author(s):  
Katherine M. Manfred ◽  
Rebecca A. Washenfelder ◽  
Nicholas L. Wagner ◽  
Gabriela Adler ◽  
Frank Erdesz ◽  
...  

Abstract. Particle morphology is an important parameter affecting aerosol optical properties that are relevant to climate and air quality, yet it is poorly constrained due to sparse in situ measurements. Biomass burning is a large source of aerosol that generates particles with different morphologies. Quantifying the optical contributions of non-spherical aerosol populations is critical for accurate radiative transfer models, and for correctly interpreting remote sensing data. We deployed a laser imaging nephelometer at the Missoula Fire Sciences Laboratory to sample biomass burning aerosol from controlled fires during the FIREX intensive laboratory study. The laser imaging nephelometer measures the unpolarized scattering phase function of an aerosol ensemble using diode lasers at 375 nm and 405 nm. Scattered light from the bulk aerosol in the instrument is imaged onto a CCD using a wide-angle field-of-view lens, which allows for measurements at 4–175° scattering angle with ~ 0.5° angular resolution. Along with a suite of other instruments, the laser imaging nephelometer sampled fresh smoke emissions both directly and after removal of volatile components with a thermodenuder at 250 °C. The total integrated aerosol scattering signal agreed with both a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrumental uncertainties. We compare the measured scattering phase functions at 405 nm to theoretical models for spherical (Mie) and fractal (Rayleigh-Debye-Gans) particle morphologies based on the size distribution reported by an optical particle counter. Results from representative fires demonstrate that particle morphology can vary dramatically for different fuel types. In some cases, the measured phase function cannot be described using Mie theory. This study demonstrates the capabilities of the laser imaging nephelometer instrument to provide real-time, in situ information about dominant particle morphology, which is vital for understanding remote sensing data and accurately describing the aerosol population in radiative transfer calculations.


2018 ◽  
Vol 18 (3) ◽  
pp. 1879-1894 ◽  
Author(s):  
Katherine M. Manfred ◽  
Rebecca A. Washenfelder ◽  
Nicholas L. Wagner ◽  
Gabriela Adler ◽  
Frank Erdesz ◽  
...  

Abstract. Particle morphology is an important parameter affecting aerosol optical properties that are relevant to climate and air quality, yet it is poorly constrained due to sparse in situ measurements. Biomass burning is a large source of aerosol that generates particles with different morphologies. Quantifying the optical contributions of non-spherical aerosol populations is critical for accurate radiative transfer models, and for correctly interpreting remote sensing data. We deployed a laser imaging nephelometer at the Missoula Fire Sciences Laboratory to sample biomass burning aerosol from controlled fires during the FIREX intensive laboratory study. The laser imaging nephelometer measures the unpolarized scattering phase function of an aerosol ensemble using diode lasers at 375 and 405 nm. Scattered light from the bulk aerosol in the instrument is imaged onto a charge-coupled device (CCD) using a wide-angle field-of-view lens, which allows for measurements at 4–175∘ scattering angle with ∼ 0.5∘ angular resolution. Along with a suite of other instruments, the laser imaging nephelometer sampled fresh smoke emissions both directly and after removal of volatile components with a thermodenuder at 250 ∘C. The total integrated aerosol scattering signal agreed with both a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrumental uncertainties. We compare the measured scattering phase functions at 405 nm to theoretical models for spherical (Mie) and fractal (Rayleigh–Debye–Gans) particle morphologies based on the size distribution reported by an optical particle counter. Results from representative fires demonstrate that particle morphology can vary dramatically for different fuel types. In some cases, the measured phase function cannot be described using Mie theory. This study demonstrates the capabilities of the laser imaging nephelometer instrument to provide realtime, in situ information about dominant particle morphology, which is vital for understanding remote sensing data and accurately describing the aerosol population in radiative transfer calculations.


2003 ◽  
Vol 108 (D13) ◽  
pp. n/a-n/a ◽  
Author(s):  
Jim M. Haywood ◽  
Simon R. Osborne ◽  
Pete N. Francis ◽  
Andreas Keil ◽  
Paola Formenti ◽  
...  

2013 ◽  
Vol 13 (9) ◽  
pp. 4983-4996 ◽  
Author(s):  
M. Pandolfi ◽  
G. Martucci ◽  
X. Querol ◽  
A. Alastuey ◽  
F. Wilsenack ◽  
...  

Abstract. Continuous measurements of surface mixed layer (SML), decoupled residual/convective layer (DRCL) and aerosol backscatter coefficient were performed within the Barcelona (Spain) boundary layer from September to October 2010 (30 days) in the framework of the SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies) field campaign. Two near-infrared ceilometers (Jenoptik CHM15K), vertically and horizontally probing (only vertical profiles are herein discussed), were deployed. Ceilometer-based DRCLs (1761 ± 363 m a.g.l.) averaged over the campaign duration were twice as high as the mean SML (904 ± 273 m a.g.l.). Both DRCL and SML showed a marked SML diurnal cycle. Ceilometer data were compared with potential temperature profiles measured by daily radiosounding (twice a day, midnight and midday) to interpret the boundary layer structure in the coastal urban area of Barcelona. The overall agreement (R2 = 0.80) between the ceilometer-retrieved and radiosounding-based SML heights (h) revealed overestimation of the SML by the ceilometer (Δh=145 ± 145 m). After separating the data in accordance with different atmospheric scenarios, the lowest SML (736 ± 183 m) and DRCL (1573 ± 428 m) were recorded during warm North African (NAF) advected air mass. By contrast, higher SML and DRCL were observed during stagnant Regional (REG) (911 ± 234 m and 1769 ± 314 m, respectively) and cold Atlantic (ATL) (965 ± 222 m and 1878 ± 290 m, respectively) air masses. In addition to being the lowest, the SML during the NAF scenario frequently showed a flat upper boundary throughout the day possibly because of the strong winds from the Mediterranean Sea limiting the midday SML convective growth. The mean backscatter coefficients were calculated at two selected heights representative of middle and top SML portions, i.e. β500 = 0.59 ± 0.45 Mm−1 sr−1 and β800 = 0.87 ± 0.68 Mm−1 sr−1 at 500 m and 800 m a.g.l., respectively. The highest backscatter coefficients were observed during NAF (β500 = 0.77 ± 0.57 Mm−1 sr−1) when compared with ATL (β500 = 0.51 ± 0.44 Mm−1 sr−1) and REG (β500 = 0.64 ± 0.39 Mm−1 sr−1). The relationship between the vertical change in backscatter coefficient and atmospheric stability (∂θ/∂z) was investigated in the first 3000 m a.g.l., aiming to study how the unstable, stable or neutral atmospheric conditions of the atmosphere alter the distribution of aerosol backscatter with height over Barcelona. A positive correlation between unstable conditions and enhanced backscatter and vice versa was found.


2011 ◽  
Vol 11 (8) ◽  
pp. 21713-21767 ◽  
Author(s):  
K. Huang ◽  
G. Zhuang ◽  
Y. Lin ◽  
J. S. Fu ◽  
Q. Wang ◽  
...  

Abstract. An intensive aerosol and gases campaign has been performed at Shanghai in the Yangtze River Delta region over Eastern China from late March to early June 2009. This study provided a complementary picture of typical haze types and formation mechanisms in megacities over China by using a synergy of ground-based monitoring, satellite observation and lidar inversion. During the whole study period, several extreme low visibility periods were observed with distinct characteristics, and three typical haze types were identified, i.e. secondary inorganic pollution, dust, and biomass burning. Sulfate, nitrate and ammonium accounted for a major part of PM2.5 mass during the secondary inorganic pollution, and the good correlation between SO2/NOx/CO and PM2.5 indicated that coal burning and vehicle emission were the major sources. Large-scale regions with high AOD and low Ångström exponent were detected by remote-sensing observation during the dust pollution episode, and this episode corresponded to coarse particles rich in mineral components such as Al and Ca with mineral aerosol contributing 76.8 % to TSP. The relatively low Ca/Al ratio of 0.75 combined with the air mass backward trajectory analysis suggested the dust source from Gobi Desert. Typical tracers for biomass burning from satellite observation (column CO and HCHO) and from ground measurement (CO, particulate K+, OC, and EC) were greatly enhanced during the biomass burning pollution episode. The exclusive linear correlation between CO and PM2.5 corroborated that organic aerosol dominated aerosol chemistry during biomass burning, and the high concentration and enrichment degree of arsenic (As) could be also partly derived from biomass burning. Aerosol optical profile observed by lidar demonstrated that aerosol was mainly constrained below the boundary layer and comprised of spheric aerosol (depolarization ratio <5 %) during the secondary inorganic and biomass burning episodes, while during the dust episode thick dust layer distributed at altitudes from near the ground to 1.4 km (average depolarization ratio = 0.122 ± 0.023) with dust accounting for 44–55 % of the total aerosol extinction coefficient. This study had illustrated a good picture of the typical haze types and proposed that identification of the complicated emission sources was important for the air quality improvement in megacities in China.


2021 ◽  
Vol 13 (18) ◽  
pp. 3626
Author(s):  
Dingdong Li ◽  
Yonghua Wu ◽  
Barry Gross ◽  
Fred Moshary

Continuous observation and quantitative retrieval of aerosol backscatter coefficients are important in the study of air quality and climate in metropolitan areas such as New York City. Ceilometers are ideal for this application, but aerosol backscatter coefficient retrievals from ceilometers are challenging and require proper calibration. In this study, we calibrate the ceilometer (Lufft CHM15k, 1064 nm) system constant with the molecular backscatter coefficient and evaluate the calibrated profiles with other independent methods, including the water-phase cloud method and comparison with the NASA Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) attenuated backscatter coefficient profile. Multiple-day calibration results show a stable system constant with a relative uncertainty of about 7%. We also evaluate the overlap correction for the CHM15k ceilometer (provided by Lufft) with a Vaisala CL-31 ceilometer, and the results show good consistency between two ceilometers’ range-corrected signal (RCS) profiles above 200 m. Next, we implement a forward iterative method to retrieve aerosol backscatter coefficients from continuous ceilometer measurements. In the retrieval, the lidar ratio is constrained by the co-located NASA AERONET radiometer aerosol optical depth (AOD) retrieval and agrees with the AERONET lidar-ratio products, derived from aerosol microphysical parameters. The aerosol backscatter coefficient retrievals are validated with co-located elastic-Raman lidar retrievals and indicate a good correlation (R2≥0.95) in the planetary boundary layer (PBL). Furthermore, a case study shows that the ceilometer retrieved aerosol extinction coefficient profiles can be used to estimate the AOD of the PBL and the aloft plumes. Finally, simulations of the uncertainty of aerosol backscatter coefficient retrieval show that a calibration error of 10% results in 10–20% of relative error in the aerosol backscatter coefficient retrievals, while relative error caused by a lidar-ratio error of 10% is less than 4% in the PBL.


2021 ◽  
Vol 13 (10) ◽  
pp. 2001
Author(s):  
Antonella Boselli ◽  
Alessia Sannino ◽  
Mariagrazia D’Emilio ◽  
Xuan Wang ◽  
Salvatore Amoruso

During the summer of 2017, multiple huge fires occurred on Mount Vesuvius (Italy), dispersing a large quantity of ash in the surrounding area ensuing the burning of tens of hectares of Mediterranean scrub. The fires affected a very large area of the Vesuvius National Park and the smoke was driven by winds towards the city of Naples, causing daily peak values of particulate matter (PM) concentrations at ground level higher than the limit of the EU air quality directive. The smoke plume spreading over the area of Naples in this period was characterized by active (lidar) and passive (sun photometer) remote sensing as well as near-surface (optical particle counter) observational techniques. The measurements allowed us to follow both the PM variation at ground level and the vertical profile of fresh biomass burning aerosol as well as to analyze the optical and microphysical properties. The results evidenced the presence of a layer of fine mode aerosol with large mean values of optical depth (AOD > 0.25) and Ångstrom exponent (γ > 1.5) above the observational site. Moreover, the lidar ratio and aerosol linear depolarization obtained from the lidar observations were about 40 sr and 4%, respectively, consistent with the presence of biomass burning aerosol in the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document