The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000

2003 ◽  
Vol 108 (D13) ◽  
pp. n/a-n/a ◽  
Author(s):  
Jim M. Haywood ◽  
Simon R. Osborne ◽  
Pete N. Francis ◽  
Andreas Keil ◽  
Paola Formenti ◽  
...  
2020 ◽  
Vol 237 ◽  
pp. 08016
Author(s):  
Christina-Anna Papanikolaou ◽  
Elina Giannakaki ◽  
Alex Papayannis ◽  
Maria Tombrou ◽  
Maria Mylonaki ◽  
...  

A long-lasting biomass burning event affected Europe from 27 August to 3 September 2018. The biomass burning aerosol layers were observed with ground- and space-based lidars in heights ranged between 2-7 km (a.s.l.). The mean backscatter coefficient for the ground-based stations ranged between 0.29 and 1.51 Mm-1sr-1, while the CALIPSO retrieved values ranged between 0.43 and 1.83 Mm-1sr-1. Moreover, the mean Ångström exponent (AEb) values, relevant to backscatter, ranged from 0.83 to 1.04 for the aforementioned lidar stations. At the same time, the mean AEb values obtained from CALIPSO ranged between 0.17 and 1.89. The mean particle depolarization ratio ranged between 0.037 and 0.080.


2019 ◽  
Author(s):  
Lucja Janicka ◽  
Iwona S. Stachlewska

Abstract. The analysis of the aerosol optical properties derived at fine temporal and spatial scales were performed based on measurements obtained during heat wave event in vicinity of a cold weather front in Warsaw on August 9th–11th, 2015. The signals collected by the PollyXT-UW lidar allowed for the calculation of 23 sets of so-called 3β + 2α + 2δ + wv profiles averaged by 30-minutes periods during 2 nights. The total number of 11 different aerosol types and aerosol mixtures were identified with reference to properties within 116 sub-layers in the profiles and were characterized by the mean values. The statistical sample of various optical properties being in agreement for consecutive profiles allowed to assess the spatio-temporal extent of aerosol/mixture types. The mean lidar ratio values of 53–73 sr (355 nm) and 31–45 sr (532 nm) in the layers dominated by the anthropogenic pollution were found. For the layers dominated by the biomass burning aerosol (fresh, moderately fresh, moderately aged) mean lidar ratio was of 69–114 sr (355 nm) and 57–85 sr (532 nm). The colour ratio of lidar ratio (532 / 355) higher than 1, characteristic for aged biomass burning aerosol, was found only in one scattered layer, accompanying with low value of extinction related Ångström exponent of 0.60 ± 0.32 and low particle depolarization ratio. The maximum of the particle depolarization ratio of 4.8–5.0 % at 532 nm were observed in a layer likely contaminated with pollen and in a layer dominated by fresh biomass burning aerosol. This study provides an excellent data set for exploration of separation algorithms, aerosol typing algorithms and microphysical inversion.


2007 ◽  
Vol 7 (4) ◽  
pp. 12657-12686 ◽  
Author(s):  
K. Hungershöfer ◽  
K. Zeromskiene ◽  
Y. Iinuma ◽  
G. Helas ◽  
J. Trentmann ◽  
...  

Abstract. A better characterisation of the optical properties of biomass burning aerosol as a function of the burning conditions is required in order to quantify their effects on climate and atmospheric chemistry. Controlled laboratory combustion experiments with different fuel types were carried out at the combustion facility of the Max Planck Institute for Chemistry (Mainz, Germany) as part of the 'Impact of Vegetation Fires on the Composition and Circulation of the Atmosphere' (EFEU) project. Using the measured size distributions as well as mass scattering and absorption efficiencies, Mie calculations provided mean effective refractive indices of 1.60−0.010i and 1.56−0.010i (λ=0.55 μm) for smoke particles emitted from the combustion of savanna grass and an African hardwood (musasa), respectively. The relatively low imaginary parts suggest that the light-absorbing carbon of the investigated fresh biomass burning aerosol is only partly graphitized, resulting in strongly scattering and less absorbing particles. While the observed variability in mass scattering efficiencies was consistent with changes in particle size, the changes in the mass absorption efficiency can only be explained, if the chemical composition of the particles varies with combustion conditions.


2019 ◽  
Vol 19 (14) ◽  
pp. 9181-9208 ◽  
Author(s):  
Kristina Pistone ◽  
Jens Redemann ◽  
Sarah Doherty ◽  
Paquita Zuidema ◽  
Sharon Burton ◽  
...  

Abstract. The total effect of aerosols, both directly and on cloud properties, remains the biggest source of uncertainty in anthropogenic radiative forcing on the climate. Correct characterization of intensive aerosol optical properties, particularly in conditions where absorbing aerosol is present, is a crucial factor in quantifying these effects. The southeast Atlantic Ocean (SEA), with seasonal biomass burning smoke plumes overlying and mixing with a persistent stratocumulus cloud deck, offers an excellent natural laboratory to make the observations necessary to understand the complexities of aerosol–cloud–radiation interactions. The first field deployment of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign was conducted in September of 2016 out of Walvis Bay, Namibia. Data collected during ORACLES-2016 are used to derive aerosol properties from an unprecedented number of simultaneous measurement techniques over this region. Here, we present results from six of the eight independent instruments or instrument combinations, all applied to measure or retrieve aerosol absorption and single-scattering albedo. Most but not all of the biomass burning aerosol was located in the free troposphere, in relative humidities typically ranging up to 60 %. We present the single-scattering albedo (SSA), absorbing and total aerosol optical depth (AAOD and AOD), and absorption, scattering, and extinction Ångström exponents (AAE, SAE, and EAE, respectively) for specific case studies looking at near-coincident and near-colocated measurements from multiple instruments, and SSAs for the broader campaign average over the month-long deployment. For the case studies, we find that SSA agrees within the measurement uncertainties between multiple instruments, though, over all cases, there is no strong correlation between values reported by one instrument and another. We also find that agreement between the instruments is more robust at higher aerosol loading (AOD400>0.4). The campaign-wide average and range shows differences in the values measured by each instrument. We find the ORACLES-2016 campaign-average SSA at 500 nm (SSA500) to be between 0.85 and 0.88, depending on the instrument considered (4STAR, AirMSPI, or in situ measurements), with the interquartile ranges for all instruments between 0.83 and 0.89. This is consistent with previous September values reported over the region (between 0.84 and 0.90 for SSA at 550nm). The results suggest that the differences observed in the campaign-average values may be dominated by instrument-specific spatial sampling differences and the natural physical variability in aerosol conditions over the SEA, rather than fundamental methodological differences.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5442
Author(s):  
Christina-Anna Papanikolaou ◽  
Elina Giannakaki ◽  
Alexandros Papayannis ◽  
Maria Mylonaki ◽  
Ourania Soupiona

The aim of this paper is to study the spatio-temporal evolution of a long-lasting Canadian biomass burning event that affected Europe in August 2018. The event produced biomass burning aerosol layers which were observed during their transport from Canada to Europe from the 16 to the 26 August 2018 using active remote sensing data from the space-borne system Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). The total number of aerosol layers detected was 745 of which 42% were identified as pure biomass burning. The remaining 58% were attributed to smoke mixed with: polluted dust (34%), clean continental (10%), polluted continental (5%), desert dust (6%) or marine aerosols (3%). In this study, smoke layers, pure and mixed ones, were observed by the CALIPSO satellite from 0.8 and up to 9.6 km height above mean sea level (amsl.). The mean altitude of these layers was found between 2.1 and 5.2 km amsl. The Ångström exponent, relevant to the aerosol backscatter coefficient (532/1064 nm), ranged between 0.9 and 1.5, indicating aerosols of different sizes. The mean linear particle depolarization ratio at 532 nm for pure biomass burning aerosols was found equal to 0.05 ± 0.04, indicating near spherical aerosols. We also observed that, in case of no aerosol mixing, the sphericity of pure smoke aerosols does not change during the air mass transportation (0.05–0.06). On the contrary, when the smoke is mixed with dessert dust the mean linear particle depolarization ratio may reach values up to 0.20 ± 0.04, especially close to the African continent (Region 4).


Sign in / Sign up

Export Citation Format

Share Document