scholarly journals Mid-level clouds are frequent above the southeast Atlantic stratocumulus clouds

2020 ◽  
Author(s):  
Adeyemi A. Adebiyi ◽  
Paquita Zuidema ◽  
Ian Chang ◽  
Sharon P. Burton

Abstract. Shortwave-absorbing aerosols seasonally overlay extensive low-level stratocumulus clouds over the southeast Atlantic. While a lot of attention has been focused on the interactions between the low-level clouds and the overlying aerosols, no study has yet focused on the mid-level clouds that also occur over the region. The presence of mid-level clouds over the region complicates the attribution of the cloud radiation budget, as well as of space-based remote-sensing retrievals. Here we characterize the mid-level clouds over the southeast Atlantic using lidar- and radar-based satellite cloud retrievals in addition to the observations collected in September 2016 during the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) field campaign. We find that the mid-level clouds over the southeast Atlantic are relatively common, with the overwhelming majority of the cloud occurring between altitudes of 5 and 7 km and temperatures of 0 and −20 °C. These clouds occur at the top of a moist mid-tropospheric smoke aerosol layer, most frequently between August and October, closer to the southern African coast than farther offshore, and more frequently during the night than during the day. Between July and October, we find that about 64 % of the mid-level clouds have a geometric cloud thickness less than 1 km, and about 60 % have a cloud optical depth less than 4. Using the lidar-based depolarization–backscatter relationship for September 2016, we find that the mid-level clouds are liquid-only clouds with no evidence of the existence of ice. Furthermore, we also find that these clouds are mostly associated with synoptically-modulated mid-tropospheric moisture outflow that can be linked to the detrainment from the continental-based clouds. Overall, the presence of these supercooled mid-level clouds influences the regional cloud radiative budget by reducing the radiative cooling rates by about 10 K/day near the top of the more-dominant low-level clouds.

2020 ◽  
Vol 20 (18) ◽  
pp. 11025-11043
Author(s):  
Adeyemi A. Adebiyi ◽  
Paquita Zuidema ◽  
Ian Chang ◽  
Sharon P. Burton ◽  
Brian Cairns

Abstract. Shortwave-absorbing aerosols seasonally overlay extensive low-level stratocumulus clouds over the southeast Atlantic. While much attention has focused on the interactions between the low-level clouds and the overlying aerosols, few studies have focused on the mid-level clouds that also occur over the region. The presence of mid-level clouds over the region complicates the space-based remote-sensing retrievals of cloud properties and the evaluation of cloud radiation budgets. Here we characterize the mid-level clouds over the southeast Atlantic using lidar- and radar-based satellite cloud retrievals and observations collected in September 2016 during the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) field campaign. We find that mid-level clouds over the southeast Atlantic are relatively common, with the majority of the clouds occurring between altitudes of 5 and 7 km and at temperatures between 0 and −20 ∘C. The mid-level clouds occur at the top of a moist mid-tropospheric smoke-aerosol layer, most frequently between August and October, and closer to the southern African coast than farther offshore. They occur more frequently during the night than during the day. Between July and October, approximately 64 % of the mid-level clouds had a geometric cloud thickness less than 1 km, corresponding to a cloud optical depth of less than 4. A lidar-based depolarization–backscatter relationship for September 2016 indicates that the mid-level clouds are liquid-only clouds with no evidence of the existence of ice. In addition, a polarimeter-derived cloud droplet size distribution indicates that approximately 85 % of the September 2016 mid-level clouds had an effective radius less than 7 µm, which could further discourage the ability of the clouds to glaciate. These clouds are mostly associated with synoptically modulated mid-tropospheric moisture outflow that can be linked to the detrainment from the continental-based clouds. Overall, the supercooled mid-level clouds reduce the radiative cooling rates of the underlying low-altitude cloud tops by approximately 10 K d−1, thus influencing the regional cloud radiative budget.


2018 ◽  
Vol 11 (10) ◽  
pp. 5837-5864 ◽  
Author(s):  
Hiren Jethva ◽  
Omar Torres ◽  
Changwoo Ahn

Abstract. Aerosol–cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of adequate knowledge of the complex microphysical and radiative processes of the aerosol–cloud system. Situations when light-absorbing aerosols such as carbonaceous particles and windblown dust overlay low-level cloud decks are commonly found in several regions of the world. Contrary to the known cooling effects of these aerosols in cloud-free scenario over darker surfaces, an overlapping situation of the absorbing aerosols over the cloud can lead to a significant level of atmospheric absorption exerting a positive radiative forcing (warming) at the top of the atmosphere. We contribute to this topic by introducing a new global product of above-cloud aerosol optical depth (ACAOD) of absorbing aerosols retrieved from the near-UV observations made by the Ozone Monitoring Instrument (OMI) onboard NASA's Aura platform. Physically based on an unambiguous “color ratio” effect in the near-UV caused by the aerosol absorption above the cloud, the OMACA (OMI above-cloud aerosols) algorithm simultaneously retrieves the optical depths of aerosols and clouds under a prescribed state of the atmosphere. The OMACA algorithm shares many similarities with the two-channel cloud-free OMAERUV algorithm, including the use of AIRS carbon monoxide for aerosol type identification, CALIOP-based aerosol layer height dataset, and an OMI-based surface albedo database. We present the algorithm architecture, inversion procedure, retrieval quality flags, initial validation results, and results from a 12-year long OMI record (2005–2016) including global climatology of the frequency of occurrence, ACAOD, and aerosol-corrected cloud optical depth. A comparative analysis of the OMACA-retrieved ACAOD, collocated with equivalent accurate measurements from the HSRL-2 lidar for the ORACLES Phase I operation (August–September 2016), revealed a good agreement (R = 0.77, RMSE = 0.10). The long-term OMACA record reveals several important regions of the world, where the carbonaceous aerosols from the seasonal biomass burning and mineral dust originated over the continents are found to overlie low-level cloud decks with moderate (0.3 < ACAOD < 0.5, away from the sources) to higher levels of ACAOD (> 0.8 in the proximity to the sources), including the southeastern Atlantic Ocean, southern Indian Ocean, Southeast Asia, the tropical Atlantic Ocean off the coast of western Africa, and northern Arabian sea. No significant long-term trend in the frequency of occurrence of aerosols above the clouds and ACAOD is noticed when OMI observations that are free from the “row anomaly” throughout the operation are considered. If not accounted for, the effects of aerosol absorption above the clouds introduce low bias in the retrieval of cloud optical depth with a profound impact on increasing ACAOD and cloud brightness. The OMACA aerosol product from OMI presented in this paper offers a crucial missing piece of information from the aerosol loading above cloud that will help us to quantify the radiative effects of clouds when overlaid with aerosols and their resultant impact on cloud properties and climate.


2018 ◽  
Vol 31 (11) ◽  
pp. 4329-4346 ◽  
Author(s):  
Adeyemi A. Adebiyi ◽  
Paquita Zuidema

Abstract Shortwave-absorbing aerosols seasonally cover and interact with an expansive low-level cloud deck over the southeast Atlantic. Daily anomalies of the MODIS low cloud fraction, fine-mode aerosol optical depth (AODf), and six ERA-Interim meteorological parameters (lower-tropospheric stability, 800-hPa subsidence, 600-hPa specific humidity, 1000- and 800-hPa horizontal temperature advection, and 1000-hPa geopotential height) are constructed spanning July–October (2001–12). A standardized multiple linear regression, whereby the change in the low cloud fraction to each component’s variability is normalized by one standard deviation, facilitates comparison between the different variables. Most cloud–meteorology relationships follow expected behavior for stratocumulus clouds. Of interest is the low cloud–subsidence relationship, whereby increasing subsidence increases low cloud cover between 10° and 20°S but decreases it elsewhere. Increases in AODf increase cloudiness everywhere, independent of other meteorological predictors. The cloud–AODf effect is partially compensated by accompanying increases in the midtropospheric moisture, which is associated with decreases in low cloud cover. This suggests that the free-tropospheric moisture affects the low cloud deck primarily through longwave radiation rather than mixing. The low cloud cover is also more sensitive to aerosol when the vertical distance between the cloud and aerosol layer is relatively small, which is more likely to occur early in the biomass burning season and farther offshore. A parallel statistical analysis that does not include AODf finds altered relationships between the low cloud cover changes and meteorology that can be understood through the aerosol cross-correlations with the meteorological predictors. For example, the low cloud–stability relationship appears stronger if aerosols are not explicitly included.


2015 ◽  
Vol 28 (5) ◽  
pp. 1997-2024 ◽  
Author(s):  
Adeyemi A. Adebiyi ◽  
Paquita Zuidema ◽  
Steven J. Abel

Abstract Biomass burning aerosols seasonally overlie the subtropical southeast Atlantic stratocumulus deck. Previous modeling and observational studies have postulated a semidirect effect whereby shortwave absorption by the aerosol warms and stabilizes the lower troposphere, thickening the low-level clouds. The focus herein is on the dynamical and moisture effects that may be convoluted with the semidirect effect. Almost-daily radiosonde data from remote St. Helena Island (15.9°S, 5.6°W), covering September–October 2000–11, are combined with daily spatial averages (encompassing the island) of the MODIS clear-sky fine-mode aerosol optical depth (). Increases in are associated with increases in 750–500-hPa moisture content. The net maximum longwave cooling by moisture of almost 0.45 K day−1 reduces the aerosol layer warming from shortwave absorption. ERA-Interim spatial composites show that polluted conditions are associated with a strengthening of a deep land-based anticyclone over southern Africa, facilitating the westward offshore transport of both smoke and moisture at 600 hPa. The shallower surface-based South Atlantic anticyclone exhibits a less pronounced shift to the northeast, strengthening the low-level coastal jet exiting into the stratocumulus deck and cooling 1000-hPa potential temperatures. Warm continental outflow further increases the 800-hPa potential temperatures (), reinforcing the lower tropospheric stability () over the stratocumulus deck. Enhanced southerly dry air advection also strengthens the cloud-top humidity inversion. The increased stability helps explain an observed decrease in cloud-top heights despite an anomalous reduction in subsidence. The changes to the horizontal dynamics enhance low-level cloudiness. These are separate but not necessarily distinct from an aerosol semidirect effect, encouraging care in attribution studies.


2018 ◽  
Author(s):  
Hiren Jethva ◽  
Omar Torres ◽  
Changwoo Ahn

Abstract. Aerosol-cloud interaction continues to be one of the leading uncertain components of the climate models, primarily due to the lack of adequate knowledge of the complex microphysical and radiative processes of the aerosol-cloud system. Situations when the light-absorbing aerosols such as carbonaceous particles and windblown dust overlay low-level cloud decks are commonly found in several regions of the world. Contrary to the known cooling effects of these aerosols in cloud-free scenario over darker surfaces, an overlapping situation of the absorbing aerosols over the cloud can lead to a significant level of atmospheric absorption exerting a positive radiative forcing (warming) at the top-of-atmosphere. We contribute to this topic by introducing a new global product of the above-cloud aerosol optical depth (ACAOD) of absorbing aerosols retrieved from the near-UV observations made by the Ozone Monitoring Instrument (OMI) onboard NASA's Aura platform. Physically based on an unambiguous color ratio effect in the near-UV caused by the aerosol absorption above the cloud, the OMACA (OMI Above-Cloud Aerosols) algorithm simultaneously retrieves the optical depths of aerosols and clouds under a prescribed state of the atmosphere. The OMACA algorithm shares many similarities with the two-channel cloud-free OMAERUV algorithm, including the use of AIRS carbon monoxide for the aerosol type identification, CALIOP-based aerosol layer height dataset, and OMI-based surface albedo database. We present the algorithm architecture, inversion procedure, retrieval quality flags, initial validation results, and results from a 12-year long OMI record (2005–2016) including global climatology of the frequency of occurrence, ACAOD, and aerosol-corrected cloud optical depth. A comparative analysis of the coincident and collocated OMACA-retrieved ACAOD and equivalent accurate measurements from the HSRL-2 lidar for the ORACLES phase I operation (August-September 2016) revealed a good agreement (R=0.77, RMSE=0.10). The long-term OMACA record reveals several important regions of the world, including Southeastern Atlantic Ocean, southern Indian Ocean, South-East Asia, tropical Atlantic Ocean off the coast of western Africa, and northern Arabian sea where the carbonaceous aerosols from the seasonal biomass burning and mineral dust originated over the continents are found to overlie low-level cloud decks with moderate (0.30.8 in the proximity to the sources). No significant long-term trend in the frequency of occurrence of aerosols above the clouds and ACAOD is noticed when OMI observations that are free from the row anomaly throughout the operation are considered. If not accounted, the effects of aerosol absorption above the clouds introduce low bias in the retrieval of cloud optical depth with a profound impact at increasing ACAOD and cloud brightness. The OMACA aerosol product from OMI presented in this paper offers a crucial missing piece of information of the aerosol loading above cloud that will help us to quantify the radiative effects of clouds when overlaid with aerosols and its resultant impact on cloud properties and climate.


2009 ◽  
Vol 48 (8) ◽  
pp. 1627-1642 ◽  
Author(s):  
P. Baas ◽  
F. C. Bosveld ◽  
H. Klein Baltink ◽  
A. A. M. Holtslag

Abstract A climatology of nocturnal low-level jets (LLJs) is presented for the topographically flat measurement site at Cabauw, the Netherlands. LLJ characteristics are derived from a 7-yr half-hourly database of wind speed profiles, obtained from the 200-m mast and a wind profiler. Many LLJs at Cabauw originate from an inertial oscillation, which develops after sunset in a layer decoupled from the surface by stable stratification. The data are classified to different types of stable boundary layers by using the geostrophic wind speed and the isothermal net radiative cooling as classification parameters. For each of these classes, LLJ characteristics like frequency of occurrence, height above ground level, and the turning of the wind vector across the boundary layer are determined. It is found that LLJs occur in about 20% of the nights, are typically situated at 140–260 m above ground level, and have a speed of 6–10 m s−1. Development of a substantial LLJ is most likely to occur for moderate geostrophic forcing and a high radiative cooling. A comparison with the 40-yr ECMWF Re-Analysis (ERA-40) is added to illustrate how the results can be used to evaluate the performance of atmospheric models.


2020 ◽  
Vol 13 (3) ◽  
pp. 1485-1499 ◽  
Author(s):  
Maria P. Cadeddu ◽  
Virendra P. Ghate ◽  
Mario Mech

Abstract. The partition of cloud and drizzle water path in precipitating clouds plays a key role in determining the cloud lifetime and its evolution. A technique to quantify cloud and drizzle water path by combining measurements from a three-channel microwave radiometer (23.8, 30, and 90 GHz) with those from a vertically pointing Doppler cloud radar and a ceilometer is presented. The technique is showcased using 1 d of observations to derive precipitable water vapor, liquid water path, cloud water path, drizzle water path below the cloud base, and drizzle water path above the cloud base in precipitating stratocumulus clouds. The resulting cloud and drizzle water path within the cloud are in good qualitative agreement with the information extracted from the radar Doppler spectra. The technique is then applied to 10 d each of precipitating closed and open cellular marine stratocumuli. In the closed-cell systems only ∼20 % of the available drizzle in the cloud falls below the cloud base, compared to ∼40 % in the open-cell systems. In closed-cell systems precipitation is associated with radiative cooling at the cloud top <-100Wm-2 and a liquid water path >200 g m−2. However, drizzle in the cloud begins to exist at weak radiative cooling and liquid water path >∼150 g m−2. Our results collectively demonstrate that neglecting scattering effects for frequencies at and above 90 GHz leads to overestimation of the total liquid water path of about 10 %–15 %, while their inclusion paves the path for retrieving drizzle properties within the cloud.


2014 ◽  
Vol 119 (9) ◽  
pp. 5104-5114 ◽  
Author(s):  
Zhanqing Li ◽  
Fengsheng Zhao ◽  
Jianjun Liu ◽  
Mengjiao Jiang ◽  
Chuanfeng Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document