stable boundary layers
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 7)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Francesco Barbano ◽  
Luigi Brogno ◽  
Francesco Tampieri ◽  
Silvana Di Sabatino

AbstractThe presence of waves is proven to be ubiquitous within nocturnal stable boundary layers over complex terrain, where turbulence is in a continuous, although weak, state of activity. The typical approach based on Reynolds decomposition is unable to disaggregate waves from turbulence contributions, thus hiding any information about the production/destruction of turbulence energy injected/subtracted by the wave motion. We adopt a triple-decomposition approach to disaggregate the mean, wave, and turbulence contributions within near-surface boundary-layer flows, with the aim of unveiling the role of wave motion as a source and/or sink of turbulence kinetic and potential energies in the respective explicit budgets. By exploring the balance between buoyancy (driving waves) and shear (driving turbulence), a simple interpretation paradigm is introduced to distinguish two layers, namely the near-ground and far-ground sublayer, estimating where the turbulence kinetic energy can significantly feed or be fed by the wave. To prove this paradigm, a nocturnal valley flow is used as a case study to detail the role of wave motions on the kinetic and potential energy budgets within the two sublayers. From this dataset, the explicit kinetic and potential energy budgets are calculated, relying on a variance–covariance analysis to further comprehend the balance of energy production/destruction in each sublayer. With this investigation, we propose a simple interpretation scheme to capture and interpret the extent of the complex interaction between waves and turbulence in nocturnal stable boundary layers.


2021 ◽  
Author(s):  
Miguel Sanchez Gomez ◽  
Julie K. Lundquist ◽  
Jeffrey D. Mirocha ◽  
Robert S. Arthur ◽  
Domingo Muñoz-Esparza

Abstract. Wind plant blockage reduces the wind velocity upstream undermining turbine performance for the first row of the plant. We assess how atmospheric stability modifies the induction zone of a wind plant in flat terrain. We also explore different approaches to quantifying the magnitude and extent of the induction zone from field-like observations. To investigate the influence from atmospheric stability, we compare simulations of two stable boundary layers using the Weather Research and Forecasting model in large-eddy simulation mode, representing wind turbines using the generalized actuator disk approach. We find a faster cooling rate at the surface, which produces a stronger stably stratified boundary layer, amplifies the induction zone of both an isolated turbine and of a large wind plant. A statistical analysis on the hub-height wind speed field shows wind slowdowns only extend far upstream (up to 15D) of a wind plant in strong stable boundary layers. To evaluate different ways of measuring wind plant blockage from field-like observations, we consider various ways of estimating the freestream velocity upstream of the plant. Sampling a large area upstream is the most accurate approach to estimating the freestream conditions, and thus of measuring the blockage effect. Also, the choice of sampling method may induce errors of the same order as the velocity deficit in the induction zone.


2019 ◽  
Vol 46 (11) ◽  
pp. 6090-6100 ◽  
Author(s):  
Changxing Lan ◽  
Heping Liu ◽  
Gabriel G. Katul ◽  
Dan Li ◽  
Dennis Finn

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2292 ◽  
Author(s):  
Alexander Rautenberg ◽  
Martin Schön ◽  
Kjell zum Berge ◽  
Moritz Mauz ◽  
Patrick Manz ◽  
...  

For atmospheric boundary-layer (ABL) studies, unmanned aircraft systems (UAS) can provide new information in addition to traditional in-situ measurements, or by ground- or satellite-based remote sensing techniques. The ability of fixed-wing UAS to transect the ABL in short time supplement ground-based measurements and the ability to extent the data horizontally and vertically allows manifold investigations. Thus, the measurements can provide many new possibilities for investigating the ABL. This study presents the new mark of the Multi-Purpose Airborne Sensor Carrier (MASC-3) for wind and turbulence measurements and describes the subsystems designed to improve the wind measurement, to gain endurance and to allow operations under an enlarged range of environmental conditions. The airframe, the capabilities of the autopilot Pixhawk 2.1, the sensor system and the data acquisition software, as well as the post-processing software, provide the basis for flight experiments and are described in detail. Two flights in a stable boundary-layer and a close comparison to a measurement tower and a Sodar system depict the accuracy of the wind speed and direction measurements, as well as the turbulence measurements. Mean values, variances, covariance, turbulent kinetic energy and the integral length scale agree well with measurements from a meteorological measurement tower. MASC-3 performs valuable measurements of stable boundary layers with high temporal resolution and supplements the measurements of meteorological towers and sodar systems.


2019 ◽  
Vol 145 (722) ◽  
pp. 1799-1813 ◽  
Author(s):  
Nikki Vercauteren ◽  
Vyacheslav Boyko ◽  
Davide Faranda ◽  
Ivana Stiperski

Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 120 ◽  
Author(s):  
Xiaoping Tu ◽  
Yun Lu ◽  
Risheng Yao ◽  
Jiamin Zhu

By using meteorology and pollution observation data from Zhejiang province, and data from the National Centers for Environmental Prediction’s Global Data Assimilation System from 1 June 2013, to 31 May 2016, we analyzed air quality characteristics in Ningbo and applied the HYSPLIT model to do backward trajectory clustering statistics for pollution cases of moderate, heavy and severe (henceforth referred to as moderate-and-above) levels. The results indicated that the percentage of moderate-and-above pollution was approximately 6%, which mostly occurred from November to February, with the primary pollutant being particulate matter with a diameter of ≤2.5 μm; Moderate-and-above pollution was mainly caused by pollutants from three types of trajectories (type mx, type 1, and type 2), with type 2 differing significantly from types 1 and mx. Type 2 occurred in stable boundary layers, whereas types mx and 1 occurred in unstable and conditionally unstable layers respectively. These three trajectory types were all related to cold air, but type 2 was weaker than the other two. Analysis of typical cases of various pollution types revealed that a heavy pollution outbreak was due to continuous superposition of pollutants. The input particles most likely originated from the northwest. The upstream situation was the focus of investigation to assist in local pollution forecasting.


2018 ◽  
Vol 99 (12) ◽  
pp. 2463-2470 ◽  
Author(s):  
Bart Geerts ◽  
David J. Raymond ◽  
Vanda Grubišić ◽  
Christopher A. Davis ◽  
Mary C. Barth ◽  
...  

AbstractRecommendations are presented for in situ and remote sensing instruments and capabilities needed to advance the study of convection and turbulence in the atmosphere. These recommendations emerged from a community workshop held on 22–24 May 2017 at the National Center for Atmospheric Research and sponsored by the National Science Foundation. Four areas of research were distinguished at this workshop: i) boundary layer flows, including convective and stable boundary layers over heterogeneous land use and terrain conditions; ii) dynamics and thermodynamics of convection, including deep and shallow convection and continental and maritime convection; iii) turbulence above the boundary layer in clouds and in clear air, terrain driven and elsewhere; and iv) cloud microphysical and chemical processes in convection, including cloud electricity and lightning.The recommendations presented herein address a series of facilities and capabilities, ranging from existing ones that continue to fulfill science needs and thus should be retained and/or incrementally improved, to urgently needed new facilities, to desired capabilities for which no adequate solutions are as yet on the horizon. A common thread among all recommendations is the need for more highly resolved sampling, both in space and in time. Significant progress is anticipated, especially through the improved availability of airborne and ground-based remote sensors to the National Science Foundation (NSF)-supported community.


2016 ◽  
Vol 46 (1) ◽  
pp. 95-105 ◽  
Author(s):  
L. Mahrt ◽  
Edgar L Andreas ◽  
James B. Edson ◽  
Dean Vickers ◽  
Jielun Sun ◽  
...  

AbstractSummertime eddy correlation measurements from an offshore tower are analyzed to investigate the dependence of the friction velocity for stable conditions on the mean wind speed V, air–sea difference of virtual potential temperature δθυ, and nonstationary submeso motions. The quantity δθυ sometimes exceeds 3°C, usually because of the advection of warm air from land over cooler water at this site. Thin stable boundary layers result. Unexpectedly, does not depend systematically on the stratification δθυ even for weak winds. For weak winds, increases systematically with increasing submeso variations of the wind. The relationship for a given V is greater in nonstationary conditions. Additionally, this study examines as a function of wind direction. The relationship appears to be affected by swell direction for weak winds and advection from land for short fetches.


Sign in / Sign up

Export Citation Format

Share Document