Supplementary material to "Long- and Short-Term Temporal Variability in Cloud Condensation Nuclei Spectra in the Southern Great Plains"

Author(s):  
Russell J. Perkins ◽  
Peter J. Marinescu ◽  
Ezra J. T. Levin ◽  
Don R. Collins ◽  
Sonia M. Kreidenweis
2021 ◽  
Author(s):  
Russell J. Perkins ◽  
Peter J. Marinescu ◽  
Ezra J. T. Levin ◽  
Don R. Collins ◽  
Sonia M. Kreidenweis

Abstract. When aerosol particles seed formation of liquid water droplets in the atmosphere, they are called cloud condensation nuclei (CCN). Different aerosols will act as CCN under different degrees of water supersaturation (relative humidity above 100 %) depending on their size and composition. In this work we build and analyze a best-estimate CCN spectrum product, tabulated at ~45 min resolution, generated using high quality data from eight independent instruments at the US Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains site. The data product spans a large supersaturation range, from 0.0001 to ~30 %, and time period, 5 years from 2009–2013 and is available on the ARM data archive. We leverage this added statistical power to examine relationships that are unclear in smaller datasets. Probability distributions of many aerosol and CCN metrics are found to exhibit skewed log-normal distribution shapes. Clustering analyses of CCN spectra reveal that the primary drivers of CCN differences are aerosol number size distributions, rather than hygroscopicity or composition, especially at supersaturations above 0.2 %, while also allowing for simplified understanding of seasonal and diurnal variations in CCN behaviour. The predictive ability of using limited hygroscopicity data with accurate number size distributions to estimate CCN spectra is investigated and uncertainties of this approach are estimated. Finally, the dynamics of CCN spectral clusters and concentrations are examined with cross-correlation and autocorrelation analyses, which assist in determining the time scales of changing CCN concentrations at different supersaturations and are important for cloud modelling studies.


2013 ◽  
Vol 31 (1) ◽  
pp. 39-42
Author(s):  
Joshua R. Pool ◽  
Jason J. Griffin ◽  
Cheryl R. Boyer ◽  
Stuart L. Warren

The Midwest and southern Great Plains are known for historic and severe droughts. More common, however, are short-term recurring drought events that can limit tree survival. The pressure of environmental stress combined with numerous diseases and pests are decimating existing Pinus L. spp. (pine) plantings and driving the effort to identify alternative species. Four species of conifer were subjected to recurring moderate or severe drought to observe the effects on growth and photosynthesis. Species evaluated were: Abies nordmanniana (Nordmann fir), Cupressus arizonica (Arizona cypress), Picea engelmannii (Engelmann spruce), and Thuja × ‘Green Giant’ (‘Green Giant’ arborvitae). Recurring drought reduced height and growth index of T. × ‘Green Giant’. However, photosynthesis and root growth were unaffected by drought treatments. In contrast, reduced Pnet was the only detectable effect of recurring drought in P. engelmannii. Growth of A. nordmanniana was not affected by drought. When subjected to drought, C. arizonica reduced shoot dry weight, while maintaining photosynthesis and root growth. Overall, C. arizonica was able to maintain growth of roots and shoots as well as maintain photosynthesis which may be an advantage in the harsh climate of the Midwest and southern Great Plains.


Sign in / Sign up

Export Citation Format

Share Document