scholarly journals Using GECKO-A to derive mechanistic understanding of secondary organic aerosol formation from the ubiquitous but understudied camphene

2021 ◽  
Vol 21 (14) ◽  
pp. 11467-11487
Author(s):  
Isaac Kwadjo Afreh ◽  
Bernard Aumont ◽  
Marie Camredon ◽  
Kelley Claire Barsanti

Abstract. Camphene, a dominant monoterpene emitted from both biogenic and pyrogenic sources, has been significantly understudied, particularly in regard to secondary organic aerosol (SOA) formation. When camphene represents a significant fraction of emissions, the lack of model parameterizations for camphene can result in inadequate representation of gas-phase chemistry and underprediction of SOA formation. In this work, the first mechanistic study of SOA formation from camphene was performed using the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A). GECKO-A was used to generate gas-phase chemical mechanisms for camphene and two well-studied monoterpenes, α-pinene and limonene, as well as to predict SOA mass formation and composition based on gas/particle partitioning theory. The model simulations represented observed trends in published gas-phase reaction pathways and SOA yields well under chamber-relevant photooxidation and dark ozonolysis conditions. For photooxidation conditions, 70 % of the simulated α-pinene oxidation products remained in the gas phase compared to 50 % for limonene, supporting model predictions and observations of limonene having higher SOA yields than α-pinene under equivalent conditions. The top 10 simulated particle-phase products in the α-pinene and limonene simulations represented 37 %–50 % of the SOA mass formed and 6 %–27 % of the hydrocarbon mass reacted. To facilitate comparison of camphene with α-pinene and limonene, model simulations were run under idealized atmospheric conditions, wherein the gas-phase oxidant levels were controlled, and peroxy radicals reacted equally with HO2 and NO. Metrics for comparison included gas-phase reactivity profiles, time-evolution of SOA mass and yields, and physicochemical property distributions of gas- and particle-phase products. The controlled-reactivity simulations demonstrated that (1) in the early stages of oxidation, camphene is predicted to form very low-volatility products, lower than α-pinene and limonene, which condense at low mass loadings; and (2) the final simulated SOA yield for camphene (46 %) was relatively high, in between α-pinene (25 %) and limonene (74 %). A 50 % α-pinene + 50 % limonene mixture was then used as a surrogate to represent SOA formation from camphene; while simulated SOA mass and yield were well represented, the volatility distribution of the particle-phase products was not. To demonstrate the potential importance of including a parameterized representation of SOA formation by camphene in air quality models, SOA mass and yield were predicted for three wildland fire fuels based on measured monoterpene distributions and published SOA parameterizations for α-pinene and limonene. Using the 50/50 surrogate mixture to represent camphene increased predicted SOA mass by 43 %–50 % for black spruce and by 56 %–108 % for Douglas fir. This first detailed modeling study of the gas-phase oxidation of camphene and subsequent SOA formation highlights opportunities for future measurement–model comparisons and lays a foundation for developing chemical mechanisms and SOA parameterizations for camphene that are suitable for air quality modeling.

2020 ◽  
Author(s):  
Isaac Kwadjo Afreh ◽  
Bernard Aumont ◽  
Marie Camredon ◽  
Kelley Claire Barsanti

Abstract. Camphene, a dominant monoterpene emitted from both biogenic and pyrogenic sources, has been significantly understudied, particularly in regard to secondary organic aerosol (SOA) formation. When camphene represents a significant fraction of emissions, the lack of model parameterizations for camphene can result in inadequate representation of gas-phase chemistry and underprediction of SOA formation. In this work, the first mechanistic study of SOA formation from camphene was performed using the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A). GECKO-A was used to generate gas-phase chemical mechanisms for camphene and two well-studied monoterpenes, α-pinene and limonene; and to predict SOA mass formation and composition based on gas/particle partitioning theory. The model simulations represented observed trends in published gas-phase reaction pathways and SOA yields well under chamber-relevant photooxidation and dark ozonolysis conditions. For photooxidation conditions, 70 % of the simulated α-pinene oxidation products remained in the gas phase compared to 50 % for limonene; supporting model predictions and observations of limonene having higher SOA yields than α-pinene under equivalent conditions. The top 10 simulated particle-phase products in the α-pinene and limonene simulations represented 37–50 % of the SOA mass formed and 6–27 % of the hydrocarbon mass reacted. To facilitate comparison of camphene with α-pinene and limonene, model simulations were run under idealized atmospheric conditions, wherein the gas-phase oxidant levels were controlled. Metrics for comparison included: gas-phase reactivity profiles, time-evolution of SOA mass and yields, and physicochemical property distributions of gas- and particle-phase products. The controlled-reactivity simulations demonstrated that: (1) in the early stages of oxidation, camphene is predicted to form very low volatility products, lower than α-pinene and limonene, which condense at low mass loadings; and (2) the final simulated SOA yield for camphene (46 %) was relatively high, in between α-pinene (25 %) and limonene (74 %). A 50 / 50 (α-pinene / limonene) mixture was then used as a surrogate to represent SOA formation from camphene; while simulated SOA mass and yield were well represented, the volatility distribution of the particle-phase products was not. To demonstrate the potential importance of including a parameterized representation of SOA formation by camphene in air quality models, SOA mass and yield were predicted for three wildland fire fuels based on measured monoterpene distributions, and published SOA parameterizations for α-pinene and limonene. Using the 50 / 50 surrogate mixture to represent camphene increased predicted SOA mass by 43–50 % for black spruce and by 56–108 % for Douglas fir. This first detailed modeling study of the gas-phase oxidation of camphene and subsequent SOA formation provides an opportunity for future measurement-model comparisons and lays the foundation for developing chemical mechanism and SOA parameterizations for camphene that are suitable for air quality modeling.


2007 ◽  
Vol 7 (15) ◽  
pp. 4135-4147 ◽  
Author(s):  
A. W. H. Chan ◽  
J. H. Kroll ◽  
N. L. Ng ◽  
J. H. Seinfeld

Abstract. The distinguishing mechanism of formation of secondary organic aerosol (SOA) is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics), of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms.


2007 ◽  
Vol 7 (3) ◽  
pp. 7051-7085 ◽  
Author(s):  
A. W. H. Chan ◽  
J. H. Kroll ◽  
N. L. Ng ◽  
J. H. Seinfeld

Abstract. The distinguishing mechanism of formation of secondary organic aerosol (SOA) is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics), of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms.


2015 ◽  
Vol 15 (14) ◽  
pp. 8077-8100 ◽  
Author(s):  
K. P. Wyche ◽  
P. S. Monks ◽  
K. L. Smallbone ◽  
J. F. Hamilton ◽  
M. R. Alfarra ◽  
...  

Abstract. Highly non-linear dynamical systems, such as those found in atmospheric chemistry, necessitate hierarchical approaches to both experiment and modelling in order to ultimately identify and achieve fundamental process-understanding in the full open system. Atmospheric simulation chambers comprise an intermediate in complexity, between a classical laboratory experiment and the full, ambient system. As such, they can generate large volumes of difficult-to-interpret data. Here we describe and implement a chemometric dimension reduction methodology for the deconvolution and interpretation of complex gas- and particle-phase composition spectra. The methodology comprises principal component analysis (PCA), hierarchical cluster analysis (HCA) and positive least-squares discriminant analysis (PLS-DA). These methods are, for the first time, applied to simultaneous gas- and particle-phase composition data obtained from a comprehensive series of environmental simulation chamber experiments focused on biogenic volatile organic compound (BVOC) photooxidation and associated secondary organic aerosol (SOA) formation. We primarily investigated the biogenic SOA precursors isoprene, α-pinene, limonene, myrcene, linalool and β-caryophyllene. The chemometric analysis is used to classify the oxidation systems and resultant SOA according to the controlling chemistry and the products formed. Results show that "model" biogenic oxidative systems can be successfully separated and classified according to their oxidation products. Furthermore, a holistic view of results obtained across both the gas- and particle-phases shows the different SOA formation chemistry, initiating in the gas-phase, proceeding to govern the differences between the various BVOC SOA compositions. The results obtained are used to describe the particle composition in the context of the oxidised gas-phase matrix. An extension of the technique, which incorporates into the statistical models data from anthropogenic (i.e. toluene) oxidation and "more realistic" plant mesocosm systems, demonstrates that such an ensemble of chemometric mapping has the potential to be used for the classification of more complex spectra of unknown origin. More specifically, the addition of mesocosm data from fig and birch tree experiments shows that isoprene and monoterpene emitting sources, respectively, can be mapped onto the statistical model structure and their positional vectors can provide insight into their biological sources and controlling oxidative chemistry. The potential to extend the methodology to the analysis of ambient air is discussed using results obtained from a zero-dimensional box model incorporating mechanistic data obtained from the Master Chemical Mechanism (MCMv3.2). Such an extension to analysing ambient air would prove a powerful asset in assisting with the identification of SOA sources and the elucidation of the underlying chemical mechanisms involved.


2016 ◽  
Vol 16 (21) ◽  
pp. 13929-13944 ◽  
Author(s):  
Yuemei Han ◽  
Craig A. Stroud ◽  
John Liggio ◽  
Shao-Meng Li

Abstract. Secondary organic aerosol (SOA) formation from photooxidation of α-pinene has been investigated in a photochemical reaction chamber under varied inorganic seed particle acidity levels at moderate relative humidity. The effect of particle acidity on SOA yield and chemical composition was examined under high- and low-NOx conditions. The SOA yield (4.2–7.6 %) increased nearly linearly with the increase in particle acidity under high-NOx conditions. In contrast, the SOA yield (28.6–36.3 %) was substantially higher under low-NOx conditions, but its dependency on particle acidity was insignificant. A relatively strong increase in SOA yield (up to 220 %) was observed in the first hour of α-pinene photooxidation under high-NOx conditions, suggesting that SOA formation was more effective for early α-pinene oxidation products in the presence of fresh acidic particles. The SOA yield decreased gradually with the increase in organic mass in the initial stage (approximately 0–1 h) under high-NOx conditions, which is likely due to the inaccessibility to the acidity over time with the coating of α-pinene SOA, assuming a slow particle-phase diffusion of organic molecules into the inorganic seeds. The formation of later-generation SOA was enhanced by particle acidity even under low-NOx conditions when introducing acidic seed particles after α-pinene photooxidation, suggesting a different acidity effect exists for α-pinene SOA derived from later oxidation stages. This effect could be important in the atmosphere under conditions where α-pinene oxidation products in the gas-phase originating in forested areas (with low NOx and SOx) are transported to regions abundant in acidic aerosols such as power plant plumes or urban regions. The fraction of oxygen-containing organic fragments (CxHyO1+ 33–35 % and CxHyO2+ 16–17 %) in the total organics and the O ∕ C ratio (0.52–0.56) of α-pinene SOA were lower under high-NOx conditions than those under low-NOx conditions (39–40, 17–19, and 0.61–0.64 %), suggesting that α-pinene SOA was less oxygenated in the studied high-NOx conditions. The fraction of nitrogen-containing organic fragments (CxHyNz+ and CxHyOzNp+) in the total organics was enhanced with the increases in particle acidity under high-NOx conditions, indicating that organic nitrates may be formed heterogeneously through a mechanism catalyzed by particle acidity or that acidic conditions facilitate the partitioning of gas-phase organic nitrates into particle phase. The results of this study suggest that inorganic acidity has a significant role to play in determining various organic aerosol chemical properties such as mass yields, oxidation state, and organic nitrate content. The acidity effect being further dependent on the timescale of SOA formation is also an important parameter in the modeling of SOA.


2011 ◽  
Vol 11 (9) ◽  
pp. 24969-25010 ◽  
Author(s):  
C. L. Loza ◽  
P. S. Chhabra ◽  
L. D. Yee ◽  
J. S. Craven ◽  
R. C. Flagan ◽  
...  

Abstract. Secondary organic aerosol (SOA) can reside in the atmosphere for a week or more. While its initial formation from the gas-phase oxidation of volatile organic compounds tends to take place in the first few hours after emission, SOA can continue to evolve chemically over its atmospheric lifetime. Simulating this chemical aging over an extended time in the laboratory has proven to be challenging. We present here a procedure for studying SOA aging in laboratory chambers that is applied to achieve 36 h of oxidation. The formation and evolution of SOA from the photooxidation of m-xylene under low-NOx conditions and in the presence of either neutral or acidic seed particles is studied. In SOA aging, increasing molecular functionalization leads to less volatile products and an increase in SOA mass, whereas gas-phase or particle-phase fragmentation chemistry results in more volatile products and a loss of SOA. The challenge is to discern from measured chamber variables the extent to which these processes are important for a given SOA system. In the experiments conducted, m-xylene SOA mass increased over the initial 12-h of photooxidation and decreased beyond that time. The oxidation of the SOA, as manifested in the O:C elemental ratio and fraction of organic ion detected at m/z 44 measured by the Aerodyne aerosol mass spectrometer, decreased during the first 5 h of reaction, reached a minimum, and then increased continuously until the 36 h termination. This behavior is consistent with an initial period in which, as the mass of SOA increases, products of higher volatility partition to the aerosol phase, followed by an aging period in which gas- and particle-phase reaction products become increasingly more oxidized. After about 12–13 h, the SOA mass reaches a maximum and decreases, suggesting the existence of fragmentation chemistry. When irradiation is stopped 12.4 h into one experiment, and OH generation ceases, no loss of SOA is observed, indicating that the loss of SOA is either light- or OH-induced. Chemical ionization mass spectrometry measurements of low-volatility m-xylene oxidation products exhibit behavior indicative of continuous photooxidation chemistry. A condensed chemical mechanism of m-xylene oxidation under low-NOx conditions is capable of reproducing the general behavior of gas-phase evolution observed here. Moreover, order of magnitude analysis of the mechanism suggests that gas-phase OH reaction of low volatility SOA precursors is the dominant pathway of aging in the m-xylene system although OH reaction with particle surfaces cannot be ruled out.


2022 ◽  
Author(s):  
Zechen Yu ◽  
Myoseon Jang ◽  
Soontae Kim ◽  
Kyuwon Son ◽  
Sanghee Han ◽  
...  

Abstract. The prediction of Secondary Organic Aerosol (SOA) in regional scales is traditionally performed by using gas-particle partitioning models. In the presence of inorganic salted wet aerosols, aqueous reactions of semivolatile organic compounds can also significantly contribute to SOA formation. The UNIfied Partitioning-Aerosol phase Reaction (UNIPAR) model utilizes explicit gas chemistry to better predict SOA mass from multiphase reactions. In this work, the UNIPAR model was incorporated with the Comprehensive Air Quality Model with Extensions (CAMx) to predict the ambient concentration of organic matter (OM) in urban atmospheres during the Korean-United States Air Quality (2016 KORUS-AQ) campaign. The SOA mass predicted with the CAMx-UNIPAR model changed with varying levels of humidity and emissions and in turn, has the potential to improve the accuracy of OM simulations. The CAMx-UNIPAR model significantly improved the simulation of SOA formation under the wet condition, which often occurred during the KORUS-AQ campaign, through the consideration of aqueous reactions of reactive organic species and gas-aqueous partitioning. The contribution of aromatic SOA to total OM was significant during the low-level transport/haze period (24–31 May 2016) because aromatic oxygenated products are hydrophilic and reactive in aqueous aerosols. The OM mass predicted with the CAMx-UNIPAR model was compared with that predicted with the CAMx model integrated with the conventional two product model (SOAP). Based on estimated statistical parameters to predict OM mass, the performance of CAMx-UNIPAR was noticeably better than the conventional CAMx model although both SOA models underestimated OM compared to observed values, possibly due to missing precursor hydrocarbons such as sesquiterpenes, alkanes, and intermediate VOCs. The CAMx-UNIPAR model simulation suggested that in the urban areas of South Korea, terpene and anthropogenic emissions significantly contribute to SOA formation while isoprene SOA minimally impacts SOA formation.


2020 ◽  
Vol 20 (24) ◽  
pp. 15513-15535
Author(s):  
Thomas Berkemeier ◽  
Masayuki Takeuchi ◽  
Gamze Eris ◽  
Nga L. Ng

Abstract. Organic aerosol constitutes a major fraction of the global aerosol burden and is predominantly formed as secondary organic aerosol (SOA). Environmental chambers have been used extensively to study aerosol formation and evolution under controlled conditions similar to the atmosphere, but quantitative prediction of the outcome of these experiments is generally not achieved, which signifies our lack in understanding of these results and limits their portability to large-scale models. In general, kinetic models employing state-of-the-art explicit chemical mechanisms fail to describe the mass concentration and composition of SOA obtained from chamber experiments. Specifically, chemical reactions including the nitrate radical (NO3) are a source of major uncertainty for assessing the chemical and physical properties of oxidation products. Here, we introduce a kinetic model that treats gas-phase chemistry, gas–particle partitioning, particle-phase oligomerization, and chamber vapor wall loss and use it to describe the oxidation of the monoterpenes α-pinene and limonene with NO3. The model can reproduce aerosol mass and nitration degrees in experiments using either pure precursors or their mixtures and infers volatility distributions of products, branching ratios of reactive intermediates and particle-phase reaction rates. The gas-phase chemistry in the model is based on the Master Chemical Mechanism (MCM) but trades speciation of single compounds for the overall ability of quantitatively describing SOA formation by using a lumped chemical mechanism. The complex branching into a multitude of individual products in MCM is replaced in this model with product volatility distributions and detailed peroxy (RO2) and alkoxy (RO) radical chemistry as well as amended by a particle-phase oligomerization scheme. The kinetic parameters obtained in this study are constrained by a set of SOA formation and evaporation experiments conducted in the Georgia Tech Environmental Chamber (GTEC) facility. For both precursors, we present volatility distributions of nitrated and non-nitrated reaction products that are obtained by fitting the kinetic model systematically to the experimental data using a global optimization method, the Monte Carlo genetic algorithm (MCGA). The results presented here provide new mechanistic insight into the processes leading to formation and evaporation of SOA. Most notably, the model suggests that the observed slow evaporation of SOA could be due to reversible oligomerization reactions in the particle phase. However, the observed non-linear behavior of precursor mixtures points towards a complex interplay of reversible oligomerization and kinetic limitations of mass transport in the particle phase, which is explored in a model sensitivity study. The methodologies described in this work provide a basis for quantitative analysis of multi-source data from environmental chamber experiments but also show that a large data pool is needed to fully resolve uncertainties in model parameters.


2020 ◽  
Vol 240 ◽  
pp. 117740
Author(s):  
Lingshuo Meng ◽  
Cécile Coeur ◽  
Layal Fayad ◽  
Nicolas Houzel ◽  
Paul Genevray ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document