scholarly journals Characterization of non-refractory (NR) PM<sub>1</sub> and source apportionment of organic aerosol in Kraków, Poland

2021 ◽  
Vol 21 (19) ◽  
pp. 14893-14906
Author(s):  
Anna K. Tobler ◽  
Alicja Skiba ◽  
Francesco Canonaco ◽  
Griša Močnik ◽  
Pragati Rai ◽  
...  

Abstract. Kraków is routinely affected by very high air pollution levels, especially during the winter months. Although a lot of effort has been made to characterize ambient aerosol, there is a lack of online and long-term measurements of non-refractory aerosol. Our measurements at the AGH University of Science and Technology provide the online long-term chemical composition of ambient submicron particulate matter (PM1) between January 2018 and April 2019. Here we report the chemical characterization of non-refractory submicron aerosol and source apportionment of the organic fraction by positive matrix factorization (PMF). In contrast to other long-term source apportionment studies, we let a small PMF window roll over the dataset instead of performing PMF over the full dataset or on separate seasons. In this way, the seasonal variation in the source profiles can be captured. The uncertainties in the PMF solutions are addressed by the bootstrap resampling strategy and the random a-value approach for constrained factors. We observe clear seasonal patterns in the concentration and composition of PM1, with high concentrations during the winter months and lower concentrations during the summer months. Organics are the dominant species throughout the campaign. Five organic aerosol (OA) factors are resolved, of which three are of a primary nature (hydrocarbon-like OA (HOA), biomass burning OA (BBOA) and coal combustion OA (CCOA)) and two are of a secondary nature (more oxidized oxygenated OA (MO-OOA) and less oxidized oxygenated OA (LO-OOA)). While HOA contributes on average 8.6 % ± 2.3 % throughout the campaign, the solid-fuel-combustion-related BBOA and CCOA show a clear seasonal trend with average contributions of 10.4 % ± 2.7 % and 14.1 %, ±2.1 %, respectively. Not only BBOA but also CCOA is associated with residential heating because of the pronounced yearly cycle where the highest contributions are observed during wintertime. Throughout the campaign, the OOA can be separated into MO-OOA and LO-OOA with average contributions of 38.4 % ± 8.4 % and 28.5 % ± 11.2 %, respectively.

2021 ◽  
Author(s):  
Anna K. Tobler ◽  
Alicja Skiba ◽  
Francesco Canonaco ◽  
Griša Močnik ◽  
Pragati Rai ◽  
...  

Abstract. Krakow is routinely affected by very high air pollution levels, especially during the winter months. Although a lot of effort has been done on characterization of ambient aerosols, there is a lack of online and long-term measurements of non-refractory aerosols. Our measurements at AGH University provide online long-term chemical composition of ambient submicron particulate matter (PM1) between January 2018 and April 2019. Here we report the chemical characterization of non-refractory submicron aerosols and source apportionment of the organic fraction by positive matrix factorization (PMF). In contrast to other long-term source apportionment studies, we let a small PMF window roll over the dataset instead of performing PMF over the full dataset or on separate seasons. In this way, the seasonal variation of the source profiles can be captured. The uncertainties of the PMF solutions are addressed by the bootstrap resampling strategy and the random a-value approach for constrained factors.We observe clear seasonal patterns in concentration and composition of PM1, with high concentrations during the winter months and lower concentrations during the summer months. Organics are the dominant species throughout the campaign. Five organic aerosol (OA) factors are resolved, of which three are of primary nature (hydrocarbon-like OA (HOA), biomass burning OA (BBOA) and coal combustion OA (CCOA)) and two are of secondary nature (more oxidized oxygenated OA (MO-OOA) and less oxidized oxygenated OA (LO-OOA)). While HOA contributes on average 8.6 % ± 2.3 % throughout the campaign, the solid fuel combustion related BBOA and CCOA show a clear seasonal trend with average contributions of 10.4 % ± 2.7 % and 14.1 %, ± 2.1 % respectively. The highest contributions are observed during wintertime as a result of residential heating. Throughout the campaign, the OOA can be separated into MO-OOA and LO-OOA with average contribution of 38.4 % ± 8.4 % and 28.5 % ± 11.2 %, respectively.


2020 ◽  
Vol 745 ◽  
pp. 140924 ◽  
Author(s):  
Anna Tobler ◽  
Deepika Bhattu ◽  
Francesco Canonaco ◽  
Vipul Lalchandani ◽  
Ashutosh Shukla ◽  
...  

2018 ◽  
Author(s):  
Καλλιόπη Φλώρου

Τα ατμοσφαιρικά αερολύματα, γνωστά και ως ατμοσφαιρικά σωματίδια, είναι αιωρούμενα σωματίδια (στερεά ή υγρά) στον αέρα με διαμέτρους που κυμαίνονται από 1 nm έως περίπου 100 μm. Το ατμοσφαιρικά αερολύματα επηρεάζουν τον ακτινοβόλο προϋπολογισμό της Γης και συνεπώς το παγκόσμιο κλίμα μέσω των αποκαλούμενων άμεσων και έμμεσων ραδιενεργών επιδράσεων τους, ενώ έχουν επίσης αρνητικές επιπτώσεις στην ανθρώπινη υγεία. Μπορούν να ταξινομηθούν ως πρωτογενή (εκπεμπόμενα απευθείας στη φάση των σωματιδίων) ή δευτερογενή (σχηματίζονται στην ατμόσφαιρα μέσω μιας σειράς χημικών αντιδράσεων). Συνήθως, τα ατμοσφαιρικά σωματίδια αποτελούνται από ένα μείγμα ανόργανων και οργανικών χημικών ειδών, συμπεριλαμβανομένων των νιτρικών, θειικών, αμμωνιακών, οργανικών ενώσεων, στοιχειακού άνθρακα, θαλάσσιου άλατος, κρυσταλλικών ενώσεων και νερού. Το οργανικό αερόλυμα αντιπροσωπεύει ένα σημαντικό κλάσμα της μάζας των ατμοσφαιρικών σωματιδίων, αλλά οι πηγές και η χημική του σύνθεση δεν έχουν διευκρινιστεί ακόμη. Η φασματομετρία μάζας υψηλής ανάλυσης σε πραγματικό χρόνο ήταν η κεντρική τεχνική μέτρησης που χρησιμοποιήθηκε σε αυτή την εργασία. Το φασματόμετρο μάζας αερολύματος υψηλής ανάλυσης (HR-ToF-AMS) έχει τη δυνατότητα να μετρά συνεχώς τη χημική σύνθεση και την κατανομή μεγέθους των λεπτόκοκκων σωματιδίων (αεροζόλ με διάμετρο μικρότερη του 1μm). Τα φάσματα μάζας υψηλής ανάλυσης που παρέχονται από το όργανο κάθε λίγα λεπτά περιέχουν πληροφορίες τόσο για τις πηγές του οργανικού αεροζόλ όσο και για τη χημική του σύνθεση. Η εργασία αυτή παρουσιάζει τις πρώτες μετρήσεις με τη χρήση του HR-ToF-AMS σε δύο μεγάλες πόλεις της Ελλάδας (Αθήνα και Πάτρα) καθώς και σε μια απομακρυσμένη περιοχή (Φινοκαλιά, Κρήτη) και μελετάται η συμβολή των διαφόρων πηγών στα αντίστοιχα επίπεδα του οργανικού αεροζόλ. Επιπλέον, ο σχηματισμός δευτερογενούς οργανικού αερολύματος (SOA) κατά τη διάρκεια της φωτο-οξείδωσης του m- και p-ξυλένιου, δύο σημαντικών αρωματικών υδρογονανθράκων, διερευνάται στο εργαστήριο χρησιμοποιώντας έναν ατμοσφαιρικό θάλαμο προσομοίωσης.


2019 ◽  
Author(s):  
Yunjiang Zhang ◽  
Olivier Favez ◽  
Jean-Eudes Petit ◽  
Francesco Canonaco ◽  
Francois Truong ◽  
...  

Abstract. Organic aerosol (OA) particles are recognized as key factors influencing air quality and climate change. However, highly-time resolved year-round characterizations of their composition and sources in ambient air are still very limited due to challenging continuous observations. Here, we present an analysis of long-term variability of submicron OA using the combination of Aerosol Chemical Speciation Monitor (ACSM) and multi-wavelength aethalometer from November 2011 to March 2018 at a background site of the Paris region (France). Source apportionment of OA was achieved via partially constrained positive matrix factorization (PMF) using the multilinear engine (ME-2). Two primary OA (POA) and two oxygenated OA (OOA) factors were identified and quantified over the entire studied period. POA factors were designated as hydrocarbon-like OA (HOA) and biomass burning OA (BBOA). The latter factor presented a significant seasonality with higher concentrations in winter with significant monthly contributions to OA (18–33 %) due to enhanced residential wood burning emissions. HOA mainly originated from traffic emissions but was also influenced by biomass burning in cold periods. OOA factors were distinguished between their less- and more-oxidized fractions (LO-OOA and MO-OOA, respectively). These factors presented distinct seasonal patterns, associated with different atmospheric formation pathways. A pronounced increase of LO-OOA concentrations and contributions (50–66 %) was observed in summer, which may be mainly explained by secondary OA (SOA) formation processes involving biogenic gaseous precursors. Conversely high concentrations and OA contributions (32–62 %) of MO-OOA during winter and spring seasons were partly associated with anthropogenic emissions and/or long-range transport from northeastern Europe. The contribution of the different OA factors as a function of OA mass loading highlighted the dominant roles of POA during pollution episodes in fall and winter, and of SOA for highest springtime and summertime OA concentrations. Finally, long-term trend analyses indicated a decreasing feature (of about 200 ng m−3 yr−1) for MO-OOA, very limited or insignificant decreasing trends for primary anthropogenic carbonaceous aerosols (BBOA and HOA, along with the fossil fuel and biomass burning black carbon components), and no trend for LO-OOA over the 6+-year investigated period.


2021 ◽  
Author(s):  
Anna K. Tobler ◽  
Alicja Skiba ◽  
Francesco Canonaco ◽  
Griša Močnik ◽  
Pragati Rai ◽  
...  

2019 ◽  
Vol 19 (23) ◽  
pp. 14755-14776 ◽  
Author(s):  
Yunjiang Zhang ◽  
Olivier Favez ◽  
Jean-Eudes Petit ◽  
Francesco Canonaco ◽  
Francois Truong ◽  
...  

Abstract. Organic aerosol (OA) particles are recognized as key factors influencing air quality and climate change. However, highly time-resolved long-term characterizations of their composition and sources in ambient air are still very limited due to challenging continuous observations. Here, we present an analysis of long-term variability of submicron OA using the combination of an aerosol chemical speciation monitor (ACSM) and a multiwavelength Aethalometer from November 2011 to March 2018 at a peri-urban background site of the Paris region (France). Source apportionment of OA was achieved via partially constrained positive matrix factorization (PMF) using the multilinear engine (ME-2). Two primary OA (POA) and two oxygenated OA (OOA) factors were identified and quantified over the entire studied period. POA factors were designated as hydrocarbon-like OA (HOA) and biomass burning OA (BBOA). The latter factor presented a significant seasonality with higher concentrations in winter with significant monthly contributions to OA (18 %–33 %) due to enhanced residential wood burning emissions. HOA mainly originated from traffic emissions but was also influenced by biomass burning in cold periods. OOA factors were distinguished between their less- and more-oxidized fractions (LO-OOA and MO-OOA, respectively). These factors presented distinct seasonal patterns, associated with different atmospheric formation pathways. A pronounced increase in LO-OOA concentrations and contributions (50 %–66 %) was observed in summer, which may be mainly explained by secondary OA (SOA) formation processes involving biogenic gaseous precursors. Conversely, high concentrations and OA contributions (32 %–62 %) of MO-OOA during winter and spring seasons were partly associated with anthropogenic emissions and/or long-range transport from northeastern Europe. The contribution of the different OA factors as a function of OA mass loading highlighted the dominant roles of POA during pollution episodes in fall and winter and of SOA for highest springtime and summertime OA concentrations. Finally, long-term trend analyses indicated a decreasing feature (of about −175 ng m−3 yr−1) for MO-OOA, very limited or insignificant decreasing trends for primary anthropogenic carbonaceous aerosols (BBOA and HOA, along with the fossil-fuel and biomass-burning black carbon components) and no statistically significant trend for LO-OOA over the 6-year investigated period.


2018 ◽  
Vol 192 ◽  
pp. 182-192 ◽  
Author(s):  
Yasser Morera-Gómez ◽  
David Elustondo ◽  
Esther Lasheras ◽  
Carlos Manuel Alonso-Hernández ◽  
Jesús Miguel Santamaría

2020 ◽  
Vol 20 (2) ◽  
pp. 735-752 ◽  
Author(s):  
Sahil Bhandari ◽  
Shahzad Gani ◽  
Kanan Patel ◽  
Dongyu S. Wang ◽  
Prashant Soni ◽  
...  

Abstract. Delhi, India, is the second most populated city in the world and routinely experiences some of the highest particulate matter concentrations of any megacity on the planet, posing acute challenges to public health (World Health Organization, 2018). However, the current understanding of the sources and dynamics of PM pollution in Delhi is limited. Measurements at the Delhi Aerosol Supersite (DAS) provide long-term chemical characterization of ambient submicron aerosol in Delhi, with near-continuous online measurements of aerosol composition. Here we report on source apportionment based on positive matrix factorization (PMF), conducted on 15 months of highly time-resolved speciated submicron non-refractory PM1 (NR-PM1) between January 2017 and March 2018. We report on seasonal variability across four seasons of 2017 and interannual variability using data from the two winters and springs of 2017 and 2018. We show that a modified tracer-based organic component analysis provides an opportunity for a real-time source apportionment approach for organics in Delhi. Phase equilibrium modeling of aerosols using the extended aerosol inorganics model (E-AIM) predicts equilibrium gas-phase concentrations and allows evaluation of the importance of the ventilation coefficient (VC) and temperature in controlling primary and secondary organic aerosol. We also find that primary aerosol dominates severe air pollution episodes, and secondary aerosol dominates seasonal averages.


Sign in / Sign up

Export Citation Format

Share Document