scholarly journals Kinetic study of the gas-phase reaction of atomic chlorine with a series of aldehydes

2005 ◽  
Vol 5 (12) ◽  
pp. 3433-3440 ◽  
Author(s):  
D. Rodríguez ◽  
A. Rodríguez ◽  
A. Notario ◽  
A. Aranda ◽  
Y. Díaz-de-Mera ◽  
...  

Abstract. The reactions of Cl atoms with a series of unsaturated aldehydes have been investigated for the first time using a relative method. In order to obtain additional information for a qualitative structure versus reactivity discussion, we have also determined the rate coefficients for the reactions of atomic chlorine with their respective saturated aldehydes. These relative measurements were performed at room temperature and atmospheric pressure of air and N2, by using ethane, propene and 1-butene as reference compounds. The weighted average relative rate constants obtained, kCl±2σ (in units of cm3 molecule−1 s−1) were: trans-2-pentenal (1.31±0.19)×10−10; trans-2-hexenal (1.92±0.22)×10−10; trans-2-heptenal (2.40±0.29)×10−10; n-pentanal (2.56±0.27)×10−10; n-hexanal (2.88±0.37)×10−10; n-heptanal (3.00±0.34)×10−10. Finally, results and atmospheric implications are discussed and compared with the reactivity with OH and NO3 radicals.

2005 ◽  
Vol 5 (4) ◽  
pp. 5167-5182 ◽  
Author(s):  
D. Rodríguez ◽  
A. Rodríguez ◽  
A. Notario ◽  
A. Aranda ◽  
Y. Díaz-de-Mera ◽  
...  

Abstract. The reactions of Cl atoms with a series of unsaturated aldehydes have been investigated for the first time using a relative method. In order to obtain additional information for a qualitative structure versus reactivity discussion, we have also determined, for the first time, the rate coefficients for the reactions of atomic chlorine with their respective saturated aldehydes. These relative measurements were performed at room temperature and atmospheric pressure of air and N2, by using ethane, propene and 1-butene as reference compounds. The weighted average relative rate constants obtained, kCl±2σ (in units of cm3 molecule−1 s−1) were: trans-2-pentenal (1.31±0.19)×10−10; trans-2-hexenal (1.92±0.22)×10−10; trans-2-heptenal (2.40±0.29)×10−10; n-pentanal (2.56±0.27)×10−10; n-hexanal (2.88±0.37)×10−10; n-heptanal (3.00±0.34)×10−10. Finally, results and atmospheric implications are discussed and compared with the reactivity with OH and NO3 radicals.


2016 ◽  
Vol 119 (1) ◽  
pp. 5-18
Author(s):  
Ádám Illés ◽  
Mária Farkas ◽  
Gábor László Zügner ◽  
Gyula Novodárszki ◽  
Magdolna Mihályi ◽  
...  

2011 ◽  
Vol 11 (21) ◽  
pp. 10837-10851 ◽  
Author(s):  
R. K. Talukdar ◽  
L. Zhu ◽  
K. J. Feierabend ◽  
J. B. Burkholder

Abstract. Rate coefficients, k, for the gas-phase reaction of CH3COCHO (methylglyoxal) with the OH and NO3 radicals and (CHO)2 (glyoxal) with the NO3 radical are reported. Rate coefficients for the OH + CH3COCHO (k1) reaction were measured under pseudo-first-order conditions in OH as a function of temperature (211–373 K) and pressure (100–220 Torr, He and N2 bath gases) using pulsed laser photolysis to produce OH radicals and laser induced fluorescence to measure its temporal profile. k1 was found to be independent of the bath gas pressure with k1(295 K) = (1.29 ± 0.13) × 10−11 cm3 molecule−1 s−1 and a temperature dependence that is well represented by the Arrhenius expression k1(T) = (1.74 ± 0.20) × 10−12 exp[(590 ± 40)/T] cm3 molecule−1 s−1 where the uncertainties are 2σ and include estimated systematic errors. Rate coefficients for the NO3 + (CHO)2 (k3) and NO3 + CH3COCHO (k4) reactions were measured using a relative rate technique to be k3(296 K) = (4.0 ± 1.0) × 10−16 cm3 molecule−1 s−1 and k4(296 K) = (5.1 ± 2.1) × 10−16 cm3 molecule−1 s−1. k3(T) was also measured using an absolute rate coefficient method under pseudo-first-order conditions at 296 and 353 K to be (4.2 ± 0.8) × 10−16 and (7.9 ± 3.6) × 10−16 cm3 molecule−1 s−1, respectively, in agreement with the relative rate result obtained at room temperature. The atmospheric implications of the OH and NO3 reaction rate coefficients measured in this work are discussed.


RSC Advances ◽  
2016 ◽  
Vol 6 (57) ◽  
pp. 51834-51844
Author(s):  
María B. Blanco ◽  
Ian Barnes ◽  
Peter Wiesen ◽  
Mariano A. Teruel

Rate coefficients as a function of temperature and product distribution studies have been performed for the first time for the gas-phase reactions of chlorine atoms with methyl chlorodifluoracetate (k1) and ethyl chlorodifluoroacetate (k2) using the relative rate technique.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 795 ◽  
Author(s):  
Krzysztof J. Rudziński ◽  
Rafał Szmigielski

Nitrophenols, hazardous environmental pollutants, react promptly with atmospheric oxidants such as hydroxyl or nitrate radicals. This work aimed to estimate how fast nitrophenols are removed from the atmosphere by the aqueous-phase reactions with sulfate radical-anions. The reversed-rates method was applied to determine the relative rate constants for reactions of 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, and 2,4,6-trinitrophenol with sulfate radical-anions generated by the autoxidation of sodium sulfite catalyzed by iron(III) cations at ~298 K. The constants determined were: 9.08 × 108, 1.72 × 109, 6.60 × 108, 2.86 × 108, and 7.10 × 107 M−1 s−1, respectively. These values correlated linearly with the sums of Brown substituent coefficients and with the relative strength of the O–H bond of the respective nitrophenols. Rough estimation showed that the gas-phase reactions of 2-nitrophenol with hydroxyl or nitrate radicals dominated over the aqueous-phase reaction with sulfate radical-anions in deliquescent aerosol and haze water. In clouds, rains, and haze water, the aqueous-phase reaction of 2-nitrophenol with sulfate radical-anions dominated, provided the concentration of the radical-anions was not smaller than that of the hydroxyl or nitrate radicals. The results presented may be also interesting for designers of advanced oxidation processes for the removal of nitrophenol.


1988 ◽  
Vol 146 (3-4) ◽  
pp. 197-203 ◽  
Author(s):  
Ole J. Nielsen ◽  
Howard W. Sidebottom ◽  
Denis J. O'Farrell ◽  
Michael Donlon ◽  
Jack Treacy

2007 ◽  
Vol 7 (6) ◽  
pp. 1565-1574 ◽  
Author(s):  
E. Jiménez ◽  
B. Lanza ◽  
E. Martínez ◽  
J. Albaladejo

Abstract. The ultraviolet (λ=250–370 nm) photolysis and the OH-initiated oxidation of hexanal and trans-2-hexenal, which are relevant atmospheric processes, have been investigated at room temperature and as a function of temperature (T=263–353 K), respectively. This kinetic study as a function of temperature is reported here for the first time. Absolute absorption cross sections (σλ) were obtained using a recently built system operating in the UV region. The obtained σλ allowed the estimation of the photolysis rates (J) across the troposphere. Kinetic measurements of the gas-phase reaction of hydroxyl radicals (OH) with hexanal and trans-2-hexenal were performed by using the laser pulsed photolysis/laser-induced fluorescence technique. Rate coefficients kOH for both aldehydes were determined at temperatures between 263 and 353 K at 50 Torr in helium or argon bath gases. The temperature dependence of kOH for both aldehydes was found to be slightly negative. The tropospheric lifetime of hexanal and trans-2-hexenal due to the chemical removal by OH radicals has been estimated across the troposphere. The loss rate due to the OH chemical removal was compared with the estimated photolysis rates. Our results show that OH-reaction is the main loss process for these aldehydes in the troposphere, although photolysis is not negligible for hexanal.


2021 ◽  
Author(s):  
Mike J. Newland ◽  
Yangang Ren ◽  
Max R. McGillen ◽  
Lisa Michelat ◽  
Véronique Daële ◽  
...  

Abstract. Furans are emitted to the atmosphere during biomass burning from the pyrolysis of cellulose. They are one of the major contributing VOC classes to OH and NO3 reactivity in biomass burning plumes. The major removal process of furans from the atmosphere at night is reaction with the nitrate radical, NO3. Here we report a series of relative rate experiments in the 7300 L indoor simulation chamber at CNRS-ICARE, Orléans, using a number of different reference compounds to determine NO3 reaction rate coefficients for four furans, two furanones, and pyrrole. In the case of the two furanones, this is the first time that NO3 rate coefficients have been reported. The recommended values (cm3 molecule−1 s−1) are: furan (1.50 ± 0.23) × 10−12, 2-methylfuran (2.37 ± 0.55) × 10−11, 2,5-dimethylfuran (1.10 ± 0.33) × 10−10, furan-2-aldehyde (9.28 ± 2.3) × 10−14, 5-methyl-2(3H)-furanone (3.00 ± 0.45) × 10−12, 2(5H)-furanone < 1.410−16, and pyrrole (7.35 ± 2.06) × 10−11. The furan-2-aldehyde + NO3 reaction rate is found to be an order of magnitude lower than previously reported. We also recommend a faster rate for the α-terpinene+NO3 reaction ((2.70 ± 0.81) × 10−10 cm3 s−1). These experiments show that for furan, alkyl substituted furans, 5-methyl-2(3H)-furanone, and pyrrole, reaction with NO3 will be the dominant removal process at night, and may also contribute during the day. For 2(5H)-furanone, reaction with NO3 is not an important atmospheric sink.


2011 ◽  
Vol 11 (6) ◽  
pp. 18211-18248
Author(s):  
R. K. Talukdar ◽  
L. Zhu ◽  
K. J. Feierabend ◽  
J. B. Burkholder

Abstract. Rate coefficients, k, for the gas-phase reaction of CH3COCHO (methylglyoxal) with the OH and NO3 radicals and (CHO)2 (glyoxal) with the NO3 radical are reported. Rate coefficients for the OH + CH3COCHO (k1) reaction were measured under pseudo-first-order conditions in OH as a function of temperature (211–373 K) and pressure (100–220 Torr, He and N2 bath gases) using pulsed laser photolysis to produce OH radicals and laser induced fluorescence to measure its temporal profile. k1 was found to be independent of the bath gas pressure with k1(295 K) = (1.29 ± 0.13) × 10−11 cm3 molecule−1 s−1 and a temperature dependence that is well represented by the Arrhenius expression k1(T) = (1.74 ± 0.20) × 10−12 exp[(590 ± 40)/T] cm3 molecule−1 s−1 where the uncertainties are 2σ and include estimated systematic errors. Rate coefficients for the NO3+ (CHO)2 (k3) and NO3+ CH3COCHO (k4) reactions were measured using a relative rate technique to be k3(296 K) = (3.7 ± 1.0) × 10−16 cm3 molecule−1 s−1 and k4(296 K) = (4.1 ± 1.2) × 10−16 cm3 molecule−1 s−1. k3(T) was also measured using an absolute rate coefficient method under pseudo-first-order conditions at 296 and 353 K to be (4.2 ± 0.8) × 10−16 and (7.9 ± 3.6) × 10−16 cm3 molecule−1 s−1, respectively, in agreement with the relative rate result obtained at room temperature. The atmospheric implications of the OH and NO3 reaction rate coefficients measured in this work are discussed.


2020 ◽  
Author(s):  
Rodrigo Gastón Gibilisco ◽  
Ian Barnes ◽  
Iustinian Gabriel Bejan ◽  
Peter Wiesen

Abstract. The kinetics of the gas-phase reactions of hydroxyl radicals with two unsaturated methoxy-ketones at (298 ± 3) K and 1 atm of synthetic air have been studied for the first time using the relative rate technique in an environmental reaction chamber by in situ FTIR spectrometry. The rate coefficients obtained using propene and isobutene as reference compounds were (in units of 10–10 cm3 molecule−1 s−1) as follows: k1(OH + (E)-4-methoxy-3-buten-2-one) = (1.42 ± 0.12), and k2(OH + 1-(E)-1-methoxy-2-methyl-1-penten-3-one) = (3.34 ± 0.43). In addition, quantification of the main oxidation products has been performed and degradation mechanisms for these reactions were developed. The formation products and kinetic data confirm that the reactions proceed mainly via an addition of the OH radical to the double bond. Gas phase products, identified and quantified from these reactions, are carbonyls like methyl formate, methyl glyoxal and 2,3-pentanedione and long-lived nitrogen containing compounds such as PAN and PPN. Atmospheric lifetimes and the ozone formation potential have been estimated and possible atmospheric implications assessed.


Sign in / Sign up

Export Citation Format

Share Document