scholarly journals Spatial and temporal variation of anthropogenic black carbon emissions in China for the period 1980–2009

2011 ◽  
Vol 11 (12) ◽  
pp. 32877-32920 ◽  
Author(s):  
Y. Qin ◽  
S. D. Xie

Abstract. Multi-year inventories of anthropogenic black carbon emissions, including both fuel consumption and biomass burning, at a high spatial resolution of 0.25° × 0.25° have been constructed in China using GIS methodology for the period 1980–2009, based on official statistical data and time-varying emission factors. Results show that black carbon emissions increased from 0.87 Tg in 1980 to 1.88 Tg in 2009 with a peak in about 1995, and had been continually increasing in the first decade of the 21 century. Residential contribution to the total BC emissions declined from 82.03% in 1980 to 42.33% in 2009 at a continuous diminishing trend, but had always been the dominant contributor in China. While contributions from industry and transportation sectors had increased notably. BC emissions were mainly concentrated in the central eastern districts, the three northeastern provinces and the Sichuan Basin, covering 22.30% of China's territory, but were responsible for 43.02%, 50.47%, 50.69% and 54.30% of the national black carbon emissions in 1985, 1995, 2005 and 2009, respectively. Besides, China made up 70–85% of BC emissions in East Asia, half of the emissions in Asia, and accounted for averagely 18.97% of the global BC emissions during the estimation period.

2012 ◽  
Vol 12 (11) ◽  
pp. 4825-4841 ◽  
Author(s):  
Y. Qin ◽  
S. D. Xie

Abstract. Multi-year inventories of anthropogenic black carbon emissions, including both fuel consumption and biomass open burning, at a high spatial resolution of 0.25°×0.25° have been constructed in China using GIS methodology for the period 1980–2009, based on official statistical data and time-varying emission factors. Results show that black carbon emissions increased from 0.87 Tg in 1980 to 1.88 Tg in 2009 with a peak in about 1995, and had been continually increasing in the first decade of the 21 century. Residential contribution to the total BC emissions declined from 82.03% in 1980 to 42.33% in 2009 at a continuous diminishing trend, but had always been the dominant contributor in China. While contributions from industry and transportation sectors had increased notably. BC emissions were mainly concentrated in the central eastern districts, the three northeastern provinces and the Sichuan Basin, covering 22.30% of China's territory, but were responsible for 43.02%, 50.47%, 50.69% and 54.30% of the national black carbon emissions in 1985, 1995, 2005 and 2009, respectively. Besides, China made up 70%–85% of BC emissions in East Asia, half of the emissions in Asia, and accounted for averagely 18.97% of the global BC emissions during the estimation period.


2016 ◽  
Vol 16 (20) ◽  
pp. 13213-13230 ◽  
Author(s):  
Wei Hu ◽  
Min Hu ◽  
Wei-Wei Hu ◽  
Hongya Niu ◽  
Jing Zheng ◽  
...  

Abstract. Severe air pollution in Asia is often the consequence of a combination of large anthropogenic emissions and adverse synoptic conditions. However, limited studies on aerosols have been conducted under high emission intensity and under unique geographical and meteorological conditions. In this study, an Aerodyne high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) and other state-of-the-art instruments were utilized at a suburban site, Ziyang, in the Sichuan Basin during December 2012 to January 2013. The chemical compositions of atmospheric submicron aerosols (PM1) were determined, the sources of organic aerosols (OA) were apportioned, and the aerosol secondary formation and aging process were explored as well. Due to high humidity and static air, PM1 maintained a relatively stable level during the whole campaign, with the mean concentration of 59.7 ± 24.1 µg m−3. OA was the most abundant component (36 %) in PM1, characterized by a relatively high oxidation state. Positive matrix factorization analysis was applied to the high-resolution organic mass spectral matrix, which deconvolved OA mass spectra into four factors: low-volatility (LV-OOA) and semivolatile oxygenated OA (SV-OOA), biomass burning (BBOA) and hydrocarbon-like OA (HOA). OOA (sum of LV-OOA and SV-OOA) dominated OA as high as 71 %. In total, secondary inorganic and organic formation contributed 76 % of PM1. Secondary inorganic species correlated well (Pearson r = 0.415–0.555, p < 0.01) with relative humidity (RH), suggesting the humid air can favor the formation of secondary inorganic aerosols. As the photochemical age of OA increased with higher oxidation state, secondary organic aerosol formation contributed more to OA. The slope of OOA against Ox( = O3+NO2) steepened with the increase of RH, implying that, besides the photochemical transformation, the aqueous-phase oxidation was also an important pathway of the OOA formation. Primary emissions, especially biomass burning, resulted in high concentration and proportion of black carbon (BC) in PM1. During the episode obviously influenced by primary emissions, the contributions of BBOA to OA (26 %) and PM1 (11 %) were much higher than those (10–17 %, 4–7 %) in the clean and other polluted episodes, highlighting the significant influence of biomass burning.


2013 ◽  
Vol 118 (2) ◽  
pp. 400-411 ◽  
Author(s):  
Michael Toomey ◽  
Dar A. Roberts ◽  
Jill Caviglia-Harris ◽  
Mark A. Cochrane ◽  
Candida F. Dewes ◽  
...  

2012 ◽  
Vol 431 ◽  
pp. 68-77 ◽  
Author(s):  
Yihong Yang ◽  
Chuen-yu Chan ◽  
Jun Tao ◽  
Mang Lin ◽  
Guenter Engling ◽  
...  

2016 ◽  
Author(s):  
Wei Hu ◽  
Min Hu ◽  
Weiwei Hu ◽  
Hongya Niu ◽  
Jing Zheng ◽  
...  

Abstract. Severe air pollution caused by large amount of pollutants and adverse synoptic processes appears often in Asia. However, limited studies on aerosols have been conducted under high emission intensity, and unique geographical and meteorological conditions. In this study, an Aerodyne high resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) and other state-of-the-art instruments were utilized at a suburban site, Ziyang, in the Sichuan Basin during December 2012 to January 2013. The chemical compositions of atmospheric submicron aerosols (PM1) were determined, the sources of organic aerosols (OA) were apportioned, and the aerosol secondary formation and aging process were explored as well. Due to high humidity and static air, PM1 was maintained at a relatively stable level during the whole campaign, with the mean concentration of 59.7 &amp;pm; 24.1 μg m−3. OA was the most abundant component (36 %) in PM1, characterized by a relatively high oxidation state. Positive matrix factorization analysis was applied to the high resolution organic mass spectral matrix, which deconvolved OA mass spectra into four factors: low volatility (LV-OOA) and semi-volatile oxygenated OA (SV-OOA), biomass burning (BBOA) and hydrocarbon-like OA (HOA). OOA (sum of LV-OOA and SV-OOA) dominated OA as high as 71 %. In total, secondary inorganic and organic formation contributed 76 % of PM. Secondary inorganic species correlated well with relative humidity (RH), indicating the humid air can favor the formation of secondary inorganic aerosols. With the increase of photochemical age, OA became more aged with higher oxidation state, and secondary organic aerosol formation contributed more significantly to OA. The slope of OOA against Ox (= O3 + NO2) steepened with the increase of RH, implying that besides the photochemical transformation, the aqueous-phase oxidation was also an important pathway of the OOA formation. Primary emissions, especially biomass burning, resulted in high concentration and proportion of black carbon (BC) in PM1. During the episode obviously influenced by primary emissions, the contributions of BBOA to OA (26 %) and PM1 (11 %) were much higher than those (10–17 %, 4–7 %) in the clean and other polluted episodes, highlighting the significant influence of biomass burning.


2020 ◽  
Vol 24 (3) ◽  
pp. 662-666
Author(s):  
Shijuan Wu ◽  
Xiaofeng Tao ◽  
Deepak Mishra ◽  
Yanzhao Hou

2020 ◽  
Vol 89 ◽  
pp. 35-46 ◽  
Author(s):  
Jinqi Luo ◽  
Junke Zhang ◽  
Xiaojuan Huang ◽  
Qin Liu ◽  
Bin Luo ◽  
...  

Author(s):  
K. Przybylski ◽  
A. J. Garratt-Reed ◽  
G. J. Yurek

The addition of so-called “reactive” elements such as yttrium to alloys is known to enhance the protective nature of Cr2O3 or Al2O3 scales. However, the mechanism by which this enhancement is achieved remains unclear. An A.E.M. study has been performed of scales grown at 1000°C for 25 hr. in pure O2 on Co-45%Cr implanted at 70 keV with 2x1016 atoms/cm2 of yttrium. In the unoxidized alloys it was calculated that the maximum concentration of Y was 13.9 wt% at a depth of about 17 nm. SIMS results showed that in the scale the yttrium remained near the outer surface.


Sign in / Sign up

Export Citation Format

Share Document