scholarly journals Chemical composition, main sources and temporal variability of PM<sub>1</sub> aerosols in southern African grassland

2013 ◽  
Vol 13 (6) ◽  
pp. 15517-15566 ◽  
Author(s):  
P. Tiitta ◽  
V. Vakkari ◽  
M. Josipovic ◽  
P. Croteau ◽  
J. P. Beukes ◽  
...  

Abstract. Southern Africa is a significant source region of atmospheric pollution, yet long-term data on pollutant concentrations and properties from this region are rather limited. A recently established atmospheric measurement station in South Africa, Welgegund, is strategically situated to capture regional background emissions, as well as emissions from the major source regions in the interior of South Africa. We measured non-refractive submicron aerosols (NR-PM1) and black carbon over a one year period in Welgegund, and investigated the seasonal and diurnal patterns of aerosol concentration levels, chemical composition, acidity and oxidation level. Based on air mass back trajectories, four distinct source regions were determined for NR-PM1. Supporting data utilized in our analysis included particle number size distributions, aerosol absorption, trace gas concentrations, meteorological variables and the flux of carbon dioxide. The dominant submicron aerosol constituent during the dry season was organic aerosol, reflecting high contribution from savannah fires and other combustion sources. Organic aerosol concentrations were lower during the wet season, presumably due to wet deposition as well as reduced emissions from combustion sources. Sulfate concentrations were usually high and exceeded organic aerosol concentrations when air-masses were transported over regions containing major point sources. Sulfate and nitrate concentrations peaked when air masses passed over the industrial Highveld (iHV) area. In contrast, concentrations were much lower when air masses passed over the cleaner background (BG) areas. Air masses associated with the anti-cyclonic recirculation (ACBIC) source region contained largely aged OA. Positive Matrix Factorization (PMF) analysis of aerosol mass spectra was used to characterize the organic aerosol (OA) properties. The factors identified were oxidized organic aerosols (OOA) and biomass burning organic aerosols (BBOA) in the dry season and low-volatile (LV-OOA) and semi-volatile (SV-OOA) organic aerosols in the wet season. The results highlight the importance of primary BBOA in the dry season, which represented (33% of the total OA and peaked when air mass passed over the highly populated and industrialized region (iHV). The significance of aerosol acidity on the evolution of OOA was also discussed.

2014 ◽  
Vol 14 (4) ◽  
pp. 1909-1927 ◽  
Author(s):  
P. Tiitta ◽  
V. Vakkari ◽  
P. Croteau ◽  
J. P. Beukes ◽  
P. G. van Zyl ◽  
...  

Abstract. Southern Africa is a significant source region of atmospheric pollution, yet long-term data on pollutant concentrations and properties from this region are rather limited. A recently established atmospheric measurement station in South Africa, Welgegund, is strategically situated to capture regional background concentrations, as well as emissions from the major source regions in the interior of South Africa. We measured non-refractive submicron aerosols (NR-PM1) and black carbon over a one year period in Welgegund, and investigated the seasonal and diurnal patterns of aerosol concentration levels, chemical composition, acidity and oxidation level. Based on air mass back trajectories, four distinct source regions were determined for NR-PM1. Supporting data utilised in our analysis included particle number size distributions, aerosol absorption, trace gas concentrations, meteorological variables and the flux of carbon dioxide. The dominant submicron aerosol constituent during the dry season was organic aerosol, reflecting high contribution from savannah fires and other combustion sources. Organic aerosol concentrations were lower during the wet season, presumably due to wet deposition as well as reduced emissions from combustion sources. Sulfate concentrations were usually high and exceeded organic aerosol concentrations when air-masses were transported over regions containing major point sources. Sulfate and nitrate concentrations peaked when air masses passed over the industrial Highveld (iHV) area. In contrast, concentrations were much lower when air masses passed over the cleaner background (BG) areas. Air masses associated with the anti-cyclonic recirculation (ACBIC) source region contained largely aged OA. Positive Matrix Factorization (PMF) analysis of aerosol mass spectra was used to characterise the organic aerosol (OA) properties. The factors identified were oxidized organic aerosols (OOA) and biomass burning organic aerosols (BBOA) in the dry season and low-volatile (LV-OOA) and semi-volatile (SV-OOA) organic aerosols in the wet season. The results highlight the importance of primary BBOA in the dry season, which represented 33% of the total OA. Aerosol acidity and its potential impact on the evolution of OOA are also discussed.


2018 ◽  
Vol 18 (14) ◽  
pp. 10773-10797 ◽  
Author(s):  
John E. Shilling ◽  
Mikhail S. Pekour ◽  
Edward C. Fortner ◽  
Paulo Artaxo ◽  
Suzane de Sá ◽  
...  

Abstract. The Green Ocean Amazon (GoAmazon 2014/5) campaign, conducted from January 2014 to December 2015 in the vicinity of Manaus, Brazil, was designed to study the aerosol life cycle and aerosol–cloud interactions in both pristine and anthropogenically influenced conditions. As part of this campaign, the U.S. Department of Energy (DOE) Gulfstream 1 (G-1) research aircraft was deployed from 17 February to 25 March 2014 (wet season) and 6 September to 5 October 2014 (dry season) to investigate aerosol and cloud properties aloft. Here, we present results from the G-1 deployments focusing on measurements of the aerosol chemical composition and secondary organic aerosol (SOA) formation and aging. In the first portion of the paper, we provide an overview of the data and compare and contrast the data from the wet and dry season. Organic aerosol (OA) dominates the deployment-averaged chemical composition, comprising 80 % of the non-refractory PM1 aerosol mass, with sulfate comprising 14 %, nitrate 2 %, and ammonium 4 %. This product distribution was unchanged between seasons, despite the fact that total aerosol loading was significantly higher in the dry season and that regional and local biomass burning was a significant source of OA mass in the dry, but not wet, season. However, the OA was more oxidized in the dry season, with the median of the mean carbon oxidation state increasing from −0.45 in the wet season to −0.02 in the dry season. In the second portion of the paper, we discuss the evolution of the Manaus plume, focusing on 13 March 2014, one of the exemplary days in the wet season. On this flight, we observe a clear increase in OA concentrations in the Manaus plume relative to the background. As the plume is transported downwind and ages, we observe dynamic changes in the OA. The mean carbon oxidation state of the OA increases from −0.6 to −0.45 during the 4–5 h of photochemical aging. Hydrocarbon-like organic aerosol (HOA) mass is lost, with ΔHOA∕ΔCO values decreasing from 17.6 µg m−3 ppmv−1 over Manaus to 10.6 µg m−3 ppmv−1 95 km downwind. Loss of HOA is balanced out by formation of oxygenated organic aerosol (OOA), with ΔOOA∕ΔCO increasing from 9.2 to 23.1 µg m−3 ppmv−1. Because hydrocarbon-like organic aerosol (HOA) loss is balanced by OOA formation, we observe little change in the net Δorg∕ΔCO values; Δorg∕ΔCO averages 31 µg m−3 ppmv−1 and does not increase with aging. Analysis of the Manaus plume evolution using data from two additional flights in the wet season showed similar trends in Δorg∕ΔCO to the 13 March flight; Δorg∕ΔCO values averaged 34 µg m−3 ppmv−1 and showed little change over 4–6.5 h of aging. Our observation of constant Δorg∕ΔCO are in contrast to literature studies of the outflow of several North American cities, which report significant increases in Δorg∕ΔCO for the first day of plume aging. These observations suggest that SOA formation in the Manaus plume occurs, at least in part, by a different mechanism than observed in urban outflow plumes in most other literature studies. Constant Δorg∕ΔCO with plume aging has been observed in many biomass burning plumes, but we are unaware of reports of fresh urban emissions aging in this manner. These observations show that urban pollution emitted from Manaus in the wet season forms less particulate downwind as it ages than urban pollution emitted from North American cities.


2014 ◽  
Vol 14 (4) ◽  
pp. 4189-4227
Author(s):  
K. Jaars ◽  
J. P. Beukes ◽  
P. G. van Zyl ◽  
A. D. Venter ◽  
M. Josipovic ◽  
...  

Abstract. Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol that affect human health, crop production and regional climate. Measurements were conducted at the Welgegund measurement station (South Africa) that is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters), the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters), the Johannesburg–Pretoria metropolitan conurbation (>10 million people), the Vaal Triangle (e.g. petrochemical and pyrometallurgical industries), the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry) and also a region of anti-cyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for one year. Samples were collected twice a week for two hours during daytime and two hours during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass selective detector was used for sample preparation and analysis. Results indicated that the monthly median total aromatic hydrocarbon concentrations ranged between 0.01 to 3.1 ppb. Benzene levels did not exceed local air quality standards. Toluene was the most abundant species, with an annual median concentration of 0.63 ppb. No statistically significant differences in the concentrations measured during daytime and night-time were found and no distinct seasonal patterns were observed. Air mass back trajectory analysis proved that the lack of seasonal cycles could be attributed to patterns determining the origin of the air masses sampled. Aromatic hydrocarbon concentrations were in general significantly higher in air masses that passed over anthropocentrically impacted regions. Interspecies correlations and ratios gave some indications of the possible sources for the different aromatic hydrocarbons in the source regions defined in the paper. The highest contribution of aromatic hydrocarbon concentrations to ozone formation potential was also observed in plumes passing over anthropocentrically impacted regions.


2014 ◽  
Vol 14 (13) ◽  
pp. 7075-7089 ◽  
Author(s):  
K. Jaars ◽  
J. P. Beukes ◽  
P. G. van Zyl ◽  
A. D. Venter ◽  
M. Josipovic ◽  
...  

Abstract. Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol, which affect human health, crop production and regional climate. Measurements of aromatic hydrocarbons were conducted at the Welgegund measurement station (South Africa), which is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters), the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters), the Johannesburg–Pretoria metropolitan conurbation (> 10 million people), the Vaal Triangle (e.g. petrochemical and pyrometallurgical industries), the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry) and also a region of anticyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for 1 year. Samples were collected twice a week for 2 h during daytime and 2 h during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass selective detector was used for sample preparation and analysis. Results indicated that the monthly median (mean) total aromatic hydrocarbon concentrations ranged between 0.01 (0.011) and 3.1 (3.2) ppb. Benzene levels did not exceed the local air quality standard limit, i.e. annual mean of 1.6 ppb. Toluene was the most abundant compound, with an annual median (mean) concentration of 0.63 (0.89) ppb. No statistically significant differences in the concentrations measured during daytime and night-time were found, and no distinct seasonal patterns were observed. Air mass back trajectory analysis indicated that the lack of seasonal cycles could be attributed to patterns determining the origin of the air masses sampled. Aromatic hydrocarbon concentrations were in general significantly higher in air masses that passed over anthropogenically impacted regions. Inter-compound correlations and ratios gave some indications of the possible sources of the different aromatic hydrocarbons in the source regions defined in the paper. The highest contribution of aromatic hydrocarbon concentrations to ozone formation potential was also observed in plumes passing over anthropogenically impacted regions.


2018 ◽  
Author(s):  
John E. Shilling ◽  
Mikhail S. Pekour ◽  
Edward C. Fortner ◽  
Paulo Artaxo ◽  
Suzane de Sá ◽  
...  

Abstract. The Green Ocean Amazon (GoAmazon 2014/5) campaign, conducted from January 2014–December 2015 in the vicinity of Manaus, Brazil, was designed to study the aerosol lifecycle and aerosol-cloud interactions in both pristine and anthropogenically-influenced conditions. As part of this campaign, the U.S. Department of Energy (DOE) G-1 research aircraft was deployed from February 17–March 25, 2014 (wet season) and September 6–October 5, 2014 (dry season) to investigate aerosol and cloud properties aloft. Here, we present results from the G-1 deployments focusing on measurements of the aerosol chemical composition and discussion of aerosol sources and secondary organic aerosol formation and aging. In the first portion of the manuscript, we provide an overview of the data and compare and contrast the data from the wet and dry season. Organic aerosol (OA) dominates the deployment-averaged chemical composition, comprising 78 % of the non-refractory PM1 aerosol mass with sulfate comprising 13 %, nitrate 5 %, and ammonium 4 %. This product distribution was unchanged between seasons, despite the fact that total aerosol loading was significantly higher in the dry season and that regional and local biomass burning was a significant source of OA mass in the dry, but not wet, season. However, the OA was more oxidized in the dry season, with the median of the mean carbon oxidation state increasing from −0.45 in the wet season to −0.02 in the dry season. In the second portion of the manuscript, we discuss the evolution of the Manaus plume on March 13, 2014, one of the golden days in the wet season. On this flight, we observe a clear increase in OA concentrations in the Manaus plume relative to the background. As the plume is transported downwind and ages, we observe dynamic changes in the OA. The mean carbon oxidation state of the OA increases from −0.6 to −0.45 during the 4–5 hours of photochemical aging. Hydrocarbon-like organic aerosol (HOA) mass is lost with ΔHOA/ΔCO values decreasing from 17.6 μg/m3 ppmv−1 over Manaus to 10.6 μg/m3 ppmv−1 95 km downwind. Loss of HOA is balanced out by formation of oxygenated organic aerosol (OOA) with ΔOOA/ΔCO increasing from 9.2 to 23.1 μg/m3 ppmv−1. Because HOA loss is balanced by OOA formation, we observe little change in the net Δorg/ΔCO values; Δorg/ΔCO averages 31 μg/m3 ppmv−1 and does not increase with aging. Our observation of constant Δorg/ΔCO are in contrast to literature studies of the outflow of several North American cities, which report significant increases in Δorg/ΔCO for the first day of plume aging. These observations suggest that SOA formation in the Manaus plume occurs, at least in part, by a different mechanism than observed in urban outflow plumes in most other literature studies. Constant Δorg/ΔCO with plume aging has been observed in many biomass burning plumes, but we are unaware of reports of fresh urban emissions aging in this manner. These observations show that urban pollution emitted from Manaus in the wet season forms much less particulate downwind than urban pollution emitted from North American cities.


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 287 ◽  
Author(s):  
Xolile G. Ncipha ◽  
Venkataraman Sivakumar ◽  
Oupa E. Malahlela

This paper demonstrates the role of meteorology and air transport in influencing the South African atmospheric CO2 distribution. CO2 data from December 2004 to December 2009 acquired by the Tropospheric Emission Spectrometer (TES) instrument onboard the Aura satellite were used to establish the CO2 vertical distribution at selected regions in South Africa. The Hybrid Single-Particle Lagrangian Integrated Trajectories (HYSPLIT) atmospheric model backward trajectories were used to determine the long-range air transport impacting on South African CO2 atmospheric distribution and to detect the source areas of air masses impacting on South Africa’s atmosphere. The study found that long-range air transport can result in the accumulation or dilution of atmospheric CO2 at various sites in South Africa, depending on the source region and type of air flow. The long-range air transport from different source regions at the upper air level between the 700 and 500 hPa stable layers and the layer above 500 hPa strengthens the inhomogeneity in the vertical distribution of CO2, which is caused by the decoupling effect of the upper air stable layers. This long-range air transport also involves intercontinental air transport.


2015 ◽  
Vol 15 (1) ◽  
pp. 37-53 ◽  
Author(s):  
Y. J. Li ◽  
B. P. Lee ◽  
L. Su ◽  
J. C. H. Fung ◽  
C.K. Chan

Abstract. Atmospheric particulate matter (PM) remains poorly understood due to the lack of comprehensive measurements at high time resolution for tracking its dynamic features and the lack of long-term observation for tracking its seasonal variability. Here, we present highly time-resolved and seasonal compositions and characteristics of non-refractory components in PM with a diameter less than 1 μm (NR-PM1) at a suburban site in Hong Kong. The measurements were made with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) at the Hong Kong University of Science and Technology (HKUST) Air Quality Research Supersite for 4 months, with one in each season of the year. The average NR-PM1 concentration of ~ 15 μg m−3 is higher than those AMS measurements made in South Korea and Japan, but lower than those in North China, the Yangtze River Delta and the nearby Pearl River Delta. The seasonal dependence of the total NR-PM1 monthly averaged concentrations was small, but that of the fractions of the species in NR-PM1 was significant. Site characteristic plays an important role in the relative fractions of species in NR-PM1 and our results are generally consistent with measurements at other non-urban sites in this regard. Detailed analyses were conducted on the AMS data in the aspects of (1) species concentrations, (2) size distributions, (3) degree of oxygenation of organics, and (4) positive matrix factorization (PMF)-resolved organic factors in a seasonal context, as well as with air mass origin from back-trajectory analysis. Sulfate had the highest fraction in NR-PM1 (> 40%), and the surrogates of secondary organic species – semi-volatile oxygenated organic aerosol (SVOOA) and low-volatility oxygenated organic aerosol (LVOOA) – prevailed (~ 80%) in the organic portion of NR-PM1. Local contributions to the organic portion of NR-PM1 at this suburban site was strongly dependent on season. The hydrocarbon-like organic aerosol (HOA) factor related to local traffic emissions contributed > 10% to organic aerosols in spring and summer but only 6–7% in autumn and winter. The cooking organic aerosol (COA) factor contributed > 10% to organic aerosols in winter. With the aid of highly time-resolved data, diurnal patterns of the degree of oxygenation of organic aerosols were used to determine the sources and formation processes of the least understood organic portion of PM. The oxygen-to-carbon atomic ratio (O : C) and average carbon oxidation state OS C) showed little variation in autumn and winter, when the long-range transport of oxidized organics dominated, whereas they peaked in the afternoon in spring and summer, when locally produced secondary organic aerosol prevailed. Air mass origin, in contrast, had a strong influence on both NR-PM1 concentrations and the fractions of species in NR-PM1. The findings of the current study provide a better understanding of the role of air mass origin in the seasonal characteristics of the PM composition and the relative importance of local vs. transported organic aerosols in this region.


2013 ◽  
Vol 13 (10) ◽  
pp. 25969-25999 ◽  
Author(s):  
A. Bougiatioti ◽  
I. Stavroulas ◽  
E. Kostenidou ◽  
P. Zarmpas ◽  
C. Theodosi ◽  
...  

Abstract. The aerosol chemical composition in air masses affected by wildfires from the Greek islands of Chios, Euboea and Andros, the Dalmatian Coast and Sicily, during late summer of 2012 was characterized at the remote background site of Finokalia, Crete. Air masses were transported several hundreds of kilometers, arriving at the measurement station after approximately half a day of transport, mostly during night-time. The chemical composition of the particulate matter was studied by different high temporal resolution instruments, including an Aerosol Chemical Speciation Monitor (ACSM) and a seven-wavelength aethalometer. Despite the large distance from emission and long atmospheric processing, a clear biomass burning organic aerosol (BBOA) profile containing characteristic markers is derived from BC measurements and Positive Matrix Factorization (PMF) analysis of the ACSM mass spectra. The ratio of fresh to aged BBOA decreases with increasing atmospheric processing time and BBOA components appear to be converted to oxygenated organic aerosol (OOA). Given that the smoke was mainly transported overnight, it appears that the processing can take place in the dark. These results show that a significant fraction of the BBOA loses its characteristic AMS signature and is transformed to OOA in less than a day. This implies that biomass burning can contribute almost half of the organic aerosol mass in the area during summertime.


2015 ◽  
Vol 15 (23) ◽  
pp. 13699-13716 ◽  
Author(s):  
B. Vogel ◽  
G. Günther ◽  
R. Müller ◽  
J.-U. Grooß ◽  
M. Riese

Abstract. The impact of different boundary layer source regions in Asia on the chemical composition of the Asian monsoon anticyclone, considering its intraseasonal variability in 2012, is analysed by simulations of the Chemical Lagrangian Model of the Stratosphere (CLaMS) using artificial emission tracers. The horizontal distribution of simulated CO, O3, and artificial emission tracers for India/China are in good agreement with patterns found in satellite measurements of O3 and CO by the Aura Microwave Limb Sounder (MLS). Using in addition, correlations of artificial emission tracers with potential vorticity demonstrates that the emission tracer for India/China is a very good proxy for spatial distribution of trace gases within the Asian monsoon anticyclone. The Asian monsoon anticyclone constitutes a horizontal transport barrier for emission tracers and is highly variable in location and shape. From the end of June to early August, a northward movement of the anticyclone and, during September, a strong broadening of the spatial distribution of the emission tracer for India/China towards the tropics are found. In addition to the change of the location of the anticyclone, the contribution of different boundary source regions to the composition of the Asian monsoon anticyclone in the upper troposphere strongly depends on its intraseasonal variability and is therefore more complex than hitherto believed. The largest contributions to the composition of the air mass in the anticyclone are found from northern India and Southeast Asia at a potential temperature of 380 K. In the early (mid-June to mid-July) and late (September) period of the 2012 monsoon season, contributions of emissions from Southeast Asia are highest; in the intervening period (early August), emissions from northern India have the largest impact. Our findings show that the temporal variation of the contribution of different convective regions is imprinted in the chemical composition of the Asian monsoon anticyclone. Air masses originating in Southeast Asia are found both within and outside of the Asian monsoon anticyclone because these air masses experience, in addition to transport within the anticyclone, upward transport at the southeastern flank of the anticyclone and in the tropics. Subsequently, isentropic poleward transport of these air masses occurs at around 380 K with the result that the extratropical lowermost stratosphere in the Northern Hemisphere is flooded by the end of September with air masses originating in Southeast Asia. Even after the breakup of the anticyclonic circulation (around the end of September), significant contributions of air masses originating in India/China are still found in the upper troposphere over Asia. Our results demonstrate that emissions from India, China, and Southeast Asia have a significant impact on the chemical composition of the lowermost stratosphere of the Northern Hemisphere, in particular at the end of the monsoon season in September/October 2012.


Sign in / Sign up

Export Citation Format

Share Document