scholarly journals Studies of aerosol at a coastal site using two aerosol mass spectrometry instruments and identification of biogenic particle types

2005 ◽  
Vol 5 (5) ◽  
pp. 10799-10838 ◽  
Author(s):  
M. Dall’Osto ◽  
R. M. Harrison ◽  
H. Furutani ◽  
K. A. Prather ◽  
H. Coe ◽  
...  

Abstract. During August 2004 an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS Model 3800-100) and an Aerodyne Aerosol Mass Spectrometer (AMS) were deployed at Mace Head during the NAMBLEX campaign. Single particle data (size, positive and negative mass spectra) from the ATOFMS were imported into ART 2a, a neural network algorithm, which assigns individual particles to clusters on the basis of their mass spectral similarities. Results are very consistent with previous time consuming manual classifications (Dall'Osto et al., 2004). Three broad classes were found: sea-salt, dust and carbon-containing particles, with a number of sub-classes within each. The Aerodyne (AMS) instrument was also used during NAMBLEX, providing online, real time measurements of the mass of non-refractory components of aerosol particles as function of their size. The ATOFMS detected a type of particle not identified in our earlier analysis, with a strong signal at m/z 24, likely due to magnesium. This type of particle was detected during the same periods as pure unreacted sea salt particles and is thought to be biogenic, originating from the sea surface. AMS data are consistent with this interpretation, showing an additional organic peak in the corresponding size range at times when the Mg-rich particles are detected. The work shows the ATOFMS and AMS to be largely complementary, and to provide a powerful instrumental combination in studies of atmospheric chemistry.

2017 ◽  
Vol 10 (10) ◽  
pp. 3801-3820 ◽  
Author(s):  
Jin Liao ◽  
Charles A. Brock ◽  
Daniel M. Murphy ◽  
Donna T. Sueper ◽  
André Welti ◽  
...  

Abstract. A light-scattering module was coupled to an airborne, compact time-of-flight aerosol mass spectrometer (LS-AMS) to investigate collection efficiency (CE) while obtaining nonrefractory aerosol chemical composition measurements during the Southeast Nexus (SENEX) campaign. In this instrument, particles scatter light from an internal laser beam and trigger saving individual particle mass spectra. Nearly all of the single-particle data with mass spectra that were triggered by scattered light signals were from particles larger than ∼ 280 nm in vacuum aerodynamic diameter. Over 33 000 particles are characterized as either prompt (27 %), delayed (15 %), or null (58 %), according to the time and intensity of their total mass spectral signals. The particle mass from single-particle spectra is proportional to that derived from the light-scattering diameter (dva-LS) but not to that from the particle time-of-flight (PToF) diameter (dva-MS) from the time of the maximum mass spectral signal. The total mass spectral signal from delayed particles was about 80 % of that from prompt ones for the same dva-LS. Both field and laboratory data indicate that the relative intensities of various ions in the prompt spectra show more fragmentation compared to the delayed spectra. The particles with a delayed mass spectral signal likely bounced off the vaporizer and vaporized later on another surface within the confines of the ionization source. Because delayed particles are detected by the mass spectrometer later than expected from their dva-LS size, they can affect the interpretation of particle size (PToF) mass distributions, especially at larger sizes. The CE, measured by the average number or mass fractions of particles optically detected that had measurable mass spectra, varied significantly (0.2–0.9) in different air masses. The measured CE agreed well with a previous parameterization when CE > 0.5 for acidic particles but was sometimes lower than the minimum parameterized CE of 0.5.


2017 ◽  
Author(s):  
Jin Liao ◽  
Charles A. Brock ◽  
Daniel M. Murphy ◽  
Donna T. Sueper ◽  
André Welti ◽  
...  

Abstract. A light scattering module was coupled to an airborne, compact time-of-flight aerosol mass spectrometer (LS-ToF-AMS) to investigate collection efficiency (CE) while obtaining non-refractory aerosol chemical composition measurements during the Southeast Nexus (SENEX) campaign. In this instrument, particles typically larger than ~ 250 nm in vacuum aerodynamic diameter scatter light from an internal laser beam and trigger saving individual particle mass spectra. Over 33,000 particles are characterized as either prompt (27 %), delayed (15 %), or null (58 %), according to the appearance time and intensity of their mass spectral signals. The individual particle mass from the spectra is proportional to the mass derived from the vacuum aerodynamic diameter determined by the light scattering signals (dva-LS) rather than the traditional particle time-of-flight (PToF) size (dva). The delayed particles capture about 80 % of the total chemical mass compared to prompt ones. Both field and laboratory data indicate that the relative intensities of various ions in the prompt spectra show more fragmentation compared to the delayed spectra. The particles with a delayed mass spectral signal likely bounced on the vaporizer and vaporized later on a lower temperature surface within the confines of the ionization source. Because delayed particles are detected at a later time by the mass spectrometer than expected, they can affect the interpretation of PToF mass distributions especially at the larger sizes. CE, measured by the average number or mass fractions of particles optically detected that have measureable mass spectra, varied significantly (0.2–0.9) in different air masses. Relatively higher null fractions and corresponding lower CE for this study may have been related to the lower sensitivity of the AMS during SENEX. The measured CE generally agreed with the CE parameterization based on ambient chemical composition, including for acidic particles that had a higher CE as expected from previous studies.


2017 ◽  
Vol 10 (6) ◽  
pp. 2365-2377 ◽  
Author(s):  
David O. Topping ◽  
James Allan ◽  
M. Rami Alfarra ◽  
Bernard Aumont

Abstract. Our ability to model the chemical and thermodynamic processes that lead to secondary organic aerosol (SOA) formation is thought to be hampered by the complexity of the system. While there are fundamental models now available that can simulate the tens of thousands of reactions thought to take place, validation against experiments is highly challenging. Techniques capable of identifying individual molecules such as chromatography are generally only capable of quantifying a subset of the material present, making it unsuitable for a carbon budget analysis. Integrative analytical methods such as the Aerosol Mass Spectrometer (AMS) are capable of quantifying all mass, but because of their inability to isolate individual molecules, comparisons have been limited to simple data products such as total organic mass and the O : C ratio. More detailed comparisons could be made if more of the mass spectral information could be used, but because a discrete inversion of AMS data is not possible, this activity requires a system of predicting mass spectra based on molecular composition. In this proof-of-concept study, the ability to train supervised methods to predict electron impact ionisation (EI) mass spectra for the AMS is evaluated. Supervised Training Regression for the Arbitrary Prediction of Spectra (STRAPS) is not built from first principles. A methodology is constructed whereby the presence of specific mass-to-charge ratio (m∕z) channels is fitted as a function of molecular structure before the relative peak height for each channel is similarly fitted using a range of regression methods. The widely used AMS mass spectral database is used as a basis for this, using unit mass resolution spectra of laboratory standards. Key to the fitting process is choice of structural information, or molecular fingerprint. Our approach relies on using supervised methods to automatically optimise the relationship between spectral characteristics and these molecular fingerprints. Therefore, any internal mechanisms or instrument features impacting on fragmentation are implicitly accounted for in the fitted model. Whilst one might expect a collection of keys specifically designed according to EI fragmentation principles to offer a robust basis, the suitability of a range of commonly available fingerprints is evaluated. Using available fingerprints in isolation, initial results suggest the generic public MACCS fingerprints provide the most accurate trained model when combined with both decision trees and random forests, with median cosine angles of 0.94–0.97 between modelled and measured spectra. There is some sensitivity to choice of fingerprint, but most sensitivity is in choice of regression technique. Support vector machines perform the worst, with median values of 0.78–0.85 and lower ranges approaching 0.4, depending on the fingerprint used. More detailed analysis of modelled versus mass spectra demonstrates important composition-dependent sensitivities on a compound-by-compound basis. This is further demonstrated when we apply the trained methods to a model α-pinene SOA system, using output from the GECKO-A model. This shows that use of a generic fingerprint referred to as FP4 and one designed for vapour pressure predictions (Nanoolal) gives plausible mass spectra, whilst the use of the MACCS keys in isolation performs poorly in this application, demonstrating the need for evaluating model performance against other SOA systems rather than existing laboratory databases on single compounds. Given the limited number of compounds used within the AMS training dataset, it is difficult to prescribe which combination of approach would lead to a robust generic model across all expected compositions. Nonetheless, the study demonstrates the use of a methodology that would be improved with more training data, fingerprints designed explicitly for fragmentation mechanisms occurring within the AMS, and data from additional mixed systems for further validation. To facilitate further development of the method, including application to other instruments, the model code for re-training is provided via a public Github and Zenodo software repository.


2017 ◽  
Author(s):  
David O. Topping ◽  
James Allan ◽  
M. Rami Alfarra ◽  
Bernard Aumont

Abstract. Our ability to model the chemical and thermodynamic processes that lead to secondary organic aerosol (SOA) formation is thought to be hampered by the complexity of the system. While there are fundamental models now available that can simulate the tens of thousands of reactions thought to take place, validation against experiments is highly challenging. Techniques capable of identifying individual molecules such as chromatography are generally only capable of quantifying a subset of the material present, making it unsuitable for a carbon budget analysis. Integrative analytical methods such as the Aerosol Mass Spectrometer (AMS) are capable of quantifying all mass, but because of their inability to isolate individual molecules, comparisons have been limited to simple data products such as total organic mass and O:C ratio. More detailed comparisons could be made if more of the mass spectral information could be used, but because a discrete inversion of AMS data is not possible, this activity requires a system of predicting mass spectra based on molecular composition. In this proof of concept study, the ability to train supervised methods to predict electron impact ionisation (EI) mass spectra for the AMS is evaluated. Supervised Training Regression for the Arbitrary Prediction of Spectra (STRAPS), is not built from first principles. A methodology is constructed whereby the presence of specific mass-to-charge ratio (m/z) channels are fit as a function of molecular structure before the relative peak height for each channel is similarly fit using a range of regression methods. The widely-used AMS mass spectral database is used as a basis for this, using unit mass resolution spectra of laboratory standards. Key to the fitting process is choice of structural information, or molecular fingerprint. Our approach relies on using supervised methods to automatically optimise the relationship between spectral characteristics and these molecular fingerprints. Therefore, any internal mechanisms or instrument features impacting on fragmentation are implicitly accounted for in the fitted model. Whilst one might expect a collection of keys specifically designed according to EI fragmentation principles to offer a robust basis, the suitability of a range of commonly available fingerprints is evaluated. Initial results suggest the generic public 'MACCS' fingerprints provide the most accurate trained model when combined with both decision trees and random forests with median cosine angles of 0.94–0.97 between modelled and measured spectra. There is some sensitivity to choice of fingerprint, but most sensitivity is in choice of regression technique. Support Vector Machines perform the worst, with median values of 0.78–0.85 and lower ranges approaching 0.4 depending on the fingerprint used. More detailed analysis of modelled versus mass spectra demonstrates important composition dependent sensitivities on a compound-by-compound basis. This is further demonstrated when we apply the trained methods to a model α-pinene SOA system, using output from the GECKO-A model. This shows that use of a generic fingerprint referred to as 'FP4' and one designed for vapour pressure predictions ('Nanoolal') give plausible mass spectra, whilst the use of the MACCS keys perform poorly in this application, demonstrating the need for evaluating model performance against other SOA systems rather than existing laboratory databases on single compounds. Given the limited number of compounds used within the AMS training dataset, it is difficult to prescribe which combination of approach would lead to a robust generic model across all expected compositions. Nonetheless, the study demonstrates the use of a methodology that would be improved with more training data and data from simple mixed systems for further validation. To facilitate further development of the method, including application to other instruments, the model code for re-training is provided via a public Github and Zenodo software repository.


2012 ◽  
Vol 12 (5) ◽  
pp. 13299-13335
Author(s):  
Y. L. Sun ◽  
Q. Zhang ◽  
J. J. Schwab ◽  
T. Yang ◽  
N. L. Ng ◽  
...  

Abstract. The high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS) measurements were first combined into positive matrix factorization (PMF) analysis to investigate the sources and evolution processes of atmospheric aerosols. The new approach is able to study the mixing of organic aerosols (OA) and inorganic species, the acidity of OA factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrices resolved 8 factors for the submicron aerosols measured at Queens College in New York City in summer 2009. The hydrocarbon-like OA (HOA) and cooking OA (COA) contain very minor inorganic species, indicating the different sources and mixing characteristics between primary OA and secondary species. The two factors that are primarily ammonium sulfate (SO4-OA) and ammonium nitrate (NO3-OA), respectively, are overall neutralized, of which the OA in SO4-OA shows the highest oxidation state (O/C = 0.69) among OA factors. The semi-volatile oxygenated OA comprises two components, i.e., a less oxidized (LO-OOA) and a more oxidized (MO-OOA). The MO-OOA represents a local photochemical product with the diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO) and Ox (= O3+NO2). The much higher NO+/NO2+ fragment ion ratio in MO-OOA than that from ammonium nitrate alone provides evidence for the formation of organic nitrates. The amine-related nitrogen-enriched OA (NOA) contains ~25% of acidic inorganic salts, elucidating the formation of secondary OA from amines in acidic environments. The size distributions derived from 3-dimensional size-resolved mass spectra show distinct diurnal evolving behaviors for different OA factors, but overall a progressing evolution from smaller to larger particle mode as a function of oxidation states. Our results demonstrate that PMF analysis by incorporating inorganic aerosols is of importance for gaining more insights into the sources and processes, mixing characteristics, and acidity of OA.


2015 ◽  
Vol 15 (4) ◽  
pp. 1823-1841 ◽  
Author(s):  
A. K. Y. Lee ◽  
M. D. Willis ◽  
R. M. Healy ◽  
T. B. Onasch ◽  
J. P. D. Abbatt

Abstract. Understanding the impact of atmospheric black carbon (BC)-containing particles on human health and radiative forcing requires knowledge of the mixing state of BC, including the characteristics of the materials with which it is internally mixed. In this study, we examine the mixing state of refractory BC (rBC) and other aerosol components in an urban environment (downtown Toronto) utilizing the Aerodyne soot particle aerosol mass spectrometer equipped with a light scattering module (LS-SP-AMS). k-means cluster analysis was used to classify single particle mass spectra into chemically distinct groups. One resultant particle class is dominated by rBC mass spectral signals (C1+ to C5+) while the organic signals fall into a few major particle classes identified as hydrocarbon-like organic aerosol (HOA), oxygenated organic aerosol (OOA), and cooking emission organic aerosol (COA). A gradual mixing is observed with small rBC particles only thinly coated by HOA (~ 28% by mass on average), while over 90% of the HOA-rich particles did not contain detectable amounts of rBC. Most of the particles classified into other inorganic and organic particle classes were not significantly associated with rBC. The single particle results also suggest that HOA and COA emitted from anthropogenic sources were likely major contributors to organic-rich particles with vacuum aerodynamic diameter (dva) ranging from ~ 200 to 400 nm. The similar temporal profiles and mass spectral features of the organic classes identified by cluster analysis and the factors from a positive matrix factorization (PMF) analysis of the ensemble aerosol data set validate the interpretation of the PMF results.


2012 ◽  
Vol 12 (18) ◽  
pp. 8537-8551 ◽  
Author(s):  
Y. L. Sun ◽  
Q. Zhang ◽  
J. J. Schwab ◽  
T. Yang ◽  
N. L. Ng ◽  
...  

Abstract. Positive matrix factorization (PMF) was applied to the merged high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS) measurements to investigate the sources and evolution processes of submicron aerosols in New York City in summer 2009. This new approach is able to study the distribution of organic and inorganic species in different types of aerosols, the acidity of organic aerosol (OA) factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrix resolved 8 factors. The hydrocarbon-like OA (HOA) and cooking OA (COA) factors contain negligible amounts of inorganic species. The two factors that are primarily ammonium sulfate (SO4-OA) and ammonium nitrate (NO3-OA), respectively, are overall neutralized. Among all OA factors the organic fraction of SO4-OA shows the highest degree of oxidation (O/C = 0.69). Two semi-volatile oxygenated OA (OOA) factors, i.e., a less oxidized (LO-OOA) and a more oxidized (MO-OOA), were also identified. MO-OOA represents local photochemical products with a diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO) and Ox(= O3 + NO2). The NO+/NO2+ ion ratio in MO-OOA is much higher than that in NO3-OA and in pure ammonium nitrate, indicating the formation of organic nitrates. The nitrogen-enriched OA (NOA) factor contains ~25% of acidic inorganic salts, suggesting the formation of secondary OA via acid-base reactions of amines. The size distributions of OA factors derived from the size-resolved mass spectra show distinct diurnal evolving behaviors but overall a progressing evolution from smaller to larger particle mode as the oxidation degree of OA increases. Our results demonstrate that PMF analysis of the unified aerosol mass spectral matrix which contains both inorganic and organic aerosol signals may enable the deconvolution of more OA factors and gain more insights into the sources, processes, and chemical characteristics of OA in the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document