scholarly journals Investigation of the hygroscopic properties of Ca(NO<sub>3</sub>)<sub>2</sub> and internally mixed Ca(NO<sub>3</sub>)<sub>2</sub>/CaCO<sub>3</sub> particles by micro-Raman spectrometry

2008 ◽  
Vol 8 (3) ◽  
pp. 10597-10625 ◽  
Author(s):  
Y. J. Liu ◽  
T. Zhu ◽  
D. F. Zhao ◽  
Z. F. Zhang

Abstract. To understand and predict the role of mineral aerosol particles processed by reactive nitrogen species in the atmosphere, the hygroscopic properties of both Ca(NO3)2 and Ca(NO3)2-containing mineral particles must be well understood. Using a micro-Raman system, the dehydration and hydration processes of micro-sized individual Ca(NO3)2 and internally mixed Ca(NO3)2/CaCO3 particles were investigated systematically. In addition to accurate quantification of the dependence of water content on relative humidity (RH), significant new spectroscopic evidence related to chemical structure was also obtained to confirm the occurrence of amorphous solid state and to better understand the phase transition process. The Ca(NO3)2 particles exhibit reversible behavior in the dehydration and hydration processes; they are in the state of solution droplets above 10% RH and amorphous hydrates below 7% RH, and phase transition occurs at 7–10% RH. The hygroscopic behavior of Ca(NO3)2/CaCO3 particles is identical to that of pure Ca(NO3)2 particles, suggesting a negligible effect of the inclusion of slightly soluble CaCO3.

2008 ◽  
Vol 8 (23) ◽  
pp. 7205-7215 ◽  
Author(s):  
Y. J. Liu ◽  
T. Zhu ◽  
D. F. Zhao ◽  
Z. F. Zhang

Abstract. To understand and predict the role of mineral aerosol particles processed by reactive nitrogen species in the atmosphere, the hygroscopic properties of both Ca(NO3)2 and Ca(NO3)2-containing mineral particles must be well understood. Using a micro-Raman system, the hygroscopic behaviors of micro-sized individual Ca(NO3)2 and internally mixed Ca(NO3)2/CaCO3 particles in both dehumidifying and humidifying processes were investigated systematically. In addition to accurate quantification of the dependence of water content on relative humidity (RH), significant new spectroscopic evidence related to chemical structure was also obtained to confirm the occurrence of amorphous solid state and to better understand the phase transition process. The Ca(NO3)2 particles exhibit reversible behavior in the dehumidifying and humidifying processes; they are in the state of solution droplets above 10% RH and amorphous hydrates below 7% RH, and phase transition occurs at 7–10% RH. The hygroscopic behavior of Ca(NO3)2/CaCO3 particles is identical to that of pure Ca(NO3)2 particles, suggesting a negligible effect of the slightly soluble CaCO3 inclusion on the hygroscopic behavior of a(NO3)2/CaCO3 particles.


2018 ◽  
Vol 427 ◽  
pp. 304-311 ◽  
Author(s):  
Yifan Meng ◽  
Kang Huang ◽  
Zhou Tang ◽  
Xiaofeng Xu ◽  
Zhiyong Tan ◽  
...  

Langmuir ◽  
2016 ◽  
Vol 32 (26) ◽  
pp. 6691-6700 ◽  
Author(s):  
Zhangxin Ye ◽  
Youcheng Li ◽  
Zesheng An ◽  
Peiyi Wu

Author(s):  
Longjian Li ◽  
Jianbang Zeng ◽  
Quan Liao ◽  
Wenzhi Cui

A new lattice Boltzmann model, which is based on Shan-Chen (SC) model, is proposed to describe liquid-vapor phase transitions. The new model is validated through simulation of the one-component phase transition process. Compared with the simulation results of van der Waals fluid and the Maxwell equal-area construction, the results of new model are closer to the analytical solutions than those of SC model and Zhang model. Since the range of temperature and the maximum density ratio are increased, and the value of maximum spurious current is between those of SC and Zhang models, it is believed that this new model has better stability than SC and Zhang models. Therefore, the application scope of this new model is expanded. According to the principle of corresponding states in Engineering Thermodynamics, the simulations of water and ammonia phase transition process are implemented by using this new model with different equations of state. Compared to the experimental data of water and ammonia, the results show that the Peng-Robinson equation of state is more suitable to describe the water, ammonia and other substances phase transition process. Therefore, these simulation results have great significance for the real engineering applications.


2002 ◽  
Vol 16 (27) ◽  
pp. 1021-1026 ◽  
Author(s):  
ARANYABHUTI BHATTACHERJEE ◽  
MAN MOHAN

Crossover from individual Rabi dynamics to collective Josephson dynamics in two-coupled Bose–Einstein condensates is studied as a phase transition process. We obtain the critical value of the parameter Λ (ratio of the mean field energy to the tunneling matrix element) for the π-phase oscillations from the non-linear perturbation expansion of small oscillations around the saddle point of the first-order Euclidean (imaginary time) differential equations for polar and azimuthal angles θ and ϕ without approximation.


2009 ◽  
Vol 54 (24) ◽  
pp. 4596-4603 ◽  
Author(s):  
JianBang Zeng ◽  
LongJian Li ◽  
Quan Liao ◽  
WenZhi Cui ◽  
QingHua Chen ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (101) ◽  
pp. 83139-83143 ◽  
Author(s):  
Huafang Zhang ◽  
Quanjun Li ◽  
Pengfei Shen ◽  
Qing Dong ◽  
Bo Liu ◽  
...  

Micro-sized rods show a lower phase transition temperature than nano-sized rods, and this is interpreted on the basis of nucleating defects.


Sign in / Sign up

Export Citation Format

Share Document