scholarly journals Kinematic and reduced-dynamic precise orbit determination of low earth orbiters

2003 ◽  
Vol 1 ◽  
pp. 47-56 ◽  
Author(s):  
D. Švehla ◽  
M. Rothacher

Abstract. Various methods for kinematic and reduced-dynamic precise orbit determination (POD) of Low Earth Orbiters (LEO) were developed based on zero- and double-differencing of GPS carrier-phase measurements with and without ambiguity resolution. In this paper we present the following approaches in LEO precise orbit determination: – zero-difference kinematic POD, – zero-difference dynamic POD, – double-difference kinematic POD with and without ambiguity resolution, – double-difference dynamic POD with and without ambiguity resolution, – combined GPS/SLR reduced-dynamic POD. All developed POD approaches except the combination of GPS/SLR were tested using real CHAMP data (May 20-30, 2001) and independently validated with Satellite Laser Ranging (SLR) data over the same 11 days. With SLR measurements, additional combinations are possible and in that case one can speak of combined kinematic or combined reduced-dynamic POD. First results of such a combined GPS/SLR POD will be presented, too. This paper shows what LEO orbit accuracy may be achieved with GPS using different strategies including zerodifference and double-difference approaches. Kinematic versus dynamic orbit determination is presently an interesting issue that will also be discussed in this article.Key words. POD, kinematic orbit, dynamic orbit, LEO, CHAMP, ambiguity resolution, GPS, SLR

2021 ◽  
Vol 13 (15) ◽  
pp. 3033
Author(s):  
Hui Wei ◽  
Jiancheng Li ◽  
Xinyu Xu ◽  
Shoujian Zhang ◽  
Kaifa Kuang

In this paper, we propose a new reduced-dynamic (RD) method by introducing the second-order time-difference position (STP) as additional pseudo-observations (named the RD_STP method) for the precise orbit determination (POD) of low Earth orbiters (LEOs) from GPS observations. Theoretical and numerical analyses show that the accuracies of integrating the STPs of LEOs at 30 s intervals are better than 0.01 m when the forces (<10−5 ms−2) acting on the LEOs are ignored. Therefore, only using the Earth’s gravity model is good enough for the proposed RD_STP method. All unmodeled dynamic models (e.g., luni-solar gravitation, tide forces) are treated as the error sources of the STP pseudo-observation. In addition, there are no pseudo-stochastic orbit parameters to be estimated in the RD_STP method. Finally, we use the RD_STP method to process 15 days of GPS data from the GOCE mission. The results show that the accuracy of the RD_STP solution is more accurate and smoother than the kinematic solution in nearly polar and equatorial regions, and consistent with the RD solution. The 3D RMS of the differences between the RD_STP and RD solutions is 1.93 cm for 1 s sampling. This indicates that the proposed method has a performance comparable to the RD method, and could be an alternative for the POD of LEOs.


2019 ◽  
Vol 93 (12) ◽  
pp. 2585-2603
Author(s):  
Xiangdong An ◽  
Xiaolin Meng ◽  
Hua Chen ◽  
Weiping Jiang ◽  
Ruijie Xi ◽  
...  

2017 ◽  
Vol 11 (3) ◽  
Author(s):  
Kai Li ◽  
Xuhua Zhou ◽  
Nannan Guo ◽  
Gang Zhao ◽  
Kexin Xu ◽  
...  

AbstractZero-difference kinematic, dynamic and reduced-dynamic precise orbit determination (POD) are three methods to obtain the precise orbits of Low Earth Orbit satellites (LEOs) by using the on-board GPS observations. Comparing the differences between those methods have great significance to establish the mathematical model and is usefull for us to select a suitable method to determine the orbit of the satellite. Based on the zero-difference GPS carrier-phase measurements, Shanghai Astronomical Observatory (SHAO) has improved the early version of SHORDE and then developed it as an integrated software system, which can perform the POD of LEOs by using the above three methods. In order to introduce the function of the software, we take the Gravity Recovery And Climate Experiment (GRACE) on-board GPS observations in January 2008 as example, then we compute the corresponding orbits of GRACE by using the SHORDE software. In order to evaluate the accuracy, we compare the orbits with the precise orbits provided by Jet Propulsion Laboratory (JPL). The results show that: (1) If we use the dynamic POD method, and the force models are used to represent the non-conservative forces, the average accuracy of the GRACE orbit is 2.40cm, 3.91cm, 2.34cm and 5.17cm in radial (R), along-track (T), cross-track (N) and 3D directions respectively; If we use the accelerometer observation instead of non-conservative perturbation model, the average accuracy of the orbit is 1.82cm, 2.51cm, 3.48cm and 4.68cm in R, T, N and 3D directions respectively. The result shows that if we use accelerometer observation instead of the non-conservative perturbation model, the accuracy of orbit is better. (2) When we use the reduced-dynamic POD method to get the orbits, the average accuracy of the orbit is 0.80cm, 1.36cm, 2.38cm and 2.87cm in R, T, N and 3D directions respectively. This method is carried out by setting up the pseudo-stochastic pulses to absorb the errors of atmospheric drag and other perturbations. (3) If we use the kinematic POD method, the accuracy of the GRACE orbit is 2.92cm, 2.48cm, 2.76cm and 4.75cm in R, T, N and 3D directions respectively. In conclusion, it can be seen that the POD of GRACE satellite is practicable by using different strategies and methods. The orbit solution is well and stable, they all can obtain the GRACE orbits with centimeter-level precision.


Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 25
Author(s):  
Zhiyu Wang ◽  
Zishen Li ◽  
Ningbo Wang ◽  
Mainul Hoque ◽  
Liang Wang ◽  
...  

The real-time integer-ambiguity resolution of the carrier-phase observation is one of the most effective approaches to enhance the accuracy of real-time precise point positioning (PPP), kinematic precise orbit determination (KPOD), and reduced-dynamic precise orbit determination (RPOD) for low earth orbit (LEO) satellites. In this study, the integer phase clock (IPC) and wide-lane satellite bias (WSB) products from CNES (Centre National d’Etudes Spatiales) are used to fix ambiguity in real time. Meanwhile, the three models of real-time PPP, KPOD, and RPOD are applied to validate the contribution of ambiguity resolution. Experimental results show that (1) the average positioning accuracy of IGS stations for ambiguity-fixed solutions is improved from about 7.14 to 5.91 cm, with an improvement of around 17% compared to the real-time float PPP solutions, with enhancement in the east-west direction particularly significant, with an improvement of about 29%; (2) the average accuracy of the estimated LEO orbit with ambiguity-fixed solutions in the real-time KPOD and RPOD mode is improved by about 16% and 10%, respectively, with respect to the corresponding mode with the ambiguity-float solutions; (3) the performance of real-time LEO RPOD is better than that of the corresponding KPOD, regardless of fixed- or float-ambiguity solutions. Moreover, the average ambiguity-fixed ratio can reach more than 90% in real-time PPP, KPOD, and RPOD.


GPS Solutions ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Xingyu Zhou ◽  
Hua Chen ◽  
Wenlan Fan ◽  
Xiaohui Zhou ◽  
Qusen Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document