scholarly journals Airborne laser scanning and usefulness for hydrological models

2005 ◽  
Vol 5 ◽  
pp. 57-63 ◽  
Author(s):  
M. Hollaus ◽  
W. Wagner ◽  
K. Kraus

Abstract. Digital terrain models form the basis for distributed hydrologic models as well as for two-dimensional hydraulic river flood models. The technique used for generating high accuracy digital terrain models has shifted from stereoscopic aerial-photography to airborne laser scanning during the last years. Since the disastrous floods 2002 in Austria, large airborne laser-scanning flight campaigns have been carried out for several river basins. Additionally to the topographic information, laser scanner data offer also the possibility to estimate object heights (vegetation, buildings). Detailed land cover maps can be derived in conjunction with the complementary information provided by high-resolution colour-infrared orthophotos. As already shown in several studies, the potential of airborne laser scanning to provide data for hydrologic/hydraulic applications is high. These studies were mostly constraint to small test sites. To overcome this spatial limitation, the current paper summarises the experiences to process airborne laser scanner data for large mountainous regions, thereby demonstrating the applicability of this technique in real-world hydrological applications.

2013 ◽  
Vol 40 (12) ◽  
pp. 4688-4700 ◽  
Author(s):  
Ole Risbøl ◽  
Ole Martin Bollandsås ◽  
Anneli Nesbakken ◽  
Hans Ole Ørka ◽  
Erik Næsset ◽  
...  

2018 ◽  
Vol 7 (9) ◽  
pp. 342 ◽  
Author(s):  
Adam Salach ◽  
Krzysztof Bakuła ◽  
Magdalena Pilarska ◽  
Wojciech Ostrowski ◽  
Konrad Górski ◽  
...  

In this paper, the results of an experiment about the vertical accuracy of generated digital terrain models were assessed. The created models were based on two techniques: LiDAR and photogrammetry. The data were acquired using an ultralight laser scanner, which was dedicated to Unmanned Aerial Vehicle (UAV) platforms that provide very dense point clouds (180 points per square meter), and an RGB digital camera that collects data at very high resolution (a ground sampling distance of 2 cm). The vertical error of the digital terrain models (DTMs) was evaluated based on the surveying data measured in the field and compared to airborne laser scanning collected with a manned plane. The data were acquired in summer during a corridor flight mission over levees and their surroundings, where various types of land cover were observed. The experiment results showed unequivocally, that the terrain models obtained using LiDAR technology were more accurate. An attempt to assess the accuracy and possibilities of penetration of the point cloud from the image-based approach, whilst referring to various types of land cover, was conducted based on Real Time Kinematic Global Navigation Satellite System (GNSS-RTK) measurements and was compared to archival airborne laser scanning data. The vertical accuracy of DTM was evaluated for uncovered and vegetation areas separately, providing information about the influence of the vegetation height on the results of the bare ground extraction and DTM generation. In uncovered and low vegetation areas (0–20 cm), the vertical accuracies of digital terrain models generated from different data sources were quite similar: for the UAV Laser Scanning (ULS) data, the RMSE was 0.11 m, and for the image-based data collected using the UAV platform, it was 0.14 m, whereas for medium vegetation (higher than 60 cm), the RMSE from these two data sources were 0.11 m and 0.36 m, respectively. A decrease in the accuracy of 0.10 m, for every 20 cm of vegetation height, was observed for photogrammetric data; and such a dependency was not noticed in the case of models created from the ULS data.


2005 ◽  
Vol 42 ◽  
pp. 195-201 ◽  
Author(s):  
Thomas Geist ◽  
Hallgeir Elvehøy ◽  
Miriam Jackson ◽  
Johann Stötter

AbstractKey issues of glacier monitoring are changes in glacier geometry and glacier mass. As accurate direct measurements are costly and time-consuming, the use of various remote-sensing data for glacier monitoring is explored. One technology used and described here is airborne laser scanning. The method enables the derivation of high-quality digital elevation models (DEMs) with a vertical and horizontal accuracy in the sub-metre range. Between September 2001 and August 2002, three laser scanner data acquisition flights were carried out, covering the whole area of Engabreen, Norway, and corresponding well to the measurement dates for the mass-balance year 2001/02. The data quality of the DEMs is assessed (e.g. by comparing the values with a control area which has been surveyed independently or GPS ground profiles measured during the flights). For the whole glacier, surface elevation change and consequently volume change is calculated, quantified and compared with traditional mass-balance data for the same time interval. For the winter term, emergence/submergence velocity is determined from laser scanner data and snow-depth data and is compared with velocity measurements at stakes. The investigations reveal the high potential of airborne laser scanning for measuring the extent and the topography of glaciers as well as changes in geometry (Δarea, Δvolume).


Sign in / Sign up

Export Citation Format

Share Document