scholarly journals Information content of OCO-2 oxygen A-band channels for retrieving marine liquid cloud properties

2018 ◽  
Vol 11 (3) ◽  
pp. 1515-1528 ◽  
Author(s):  
Mark Richardson ◽  
Graeme L. Stephens

Abstract. Information content analysis is used to select channels for a marine liquid cloud retrieval using the high-spectral-resolution oxygen A-band instrument on NASA's Orbiting Carbon Observatory-2 (OCO-2). Desired retrieval properties are cloud optical depth, cloud-top pressure and cloud pressure thickness, which is the geometric thickness expressed in hectopascals. Based on information content criteria we select a micro-window of 75 of the 853 functioning OCO-2 channels spanning 763.5–764.6 nm and perform a series of synthetic retrievals with perturbed initial conditions. We estimate posterior errors from the sample standard deviations and obtain ±0.75 in optical depth and ±12.9 hPa in both cloud-top pressure and cloud pressure thickness, although removing the 10 % of samples with the highest χ2 reduces posterior error in cloud-top pressure to ±2.9 hPa and cloud pressure thickness to ±2.5 hPa. The application of this retrieval to real OCO-2 measurements is briefly discussed, along with limitations and the greatest caution is urged regarding the assumption of a single homogeneous cloud layer, which is often, but not always, a reasonable approximation for marine boundary layer clouds.

2017 ◽  
Author(s):  
Mark Richardson ◽  
Graeme L. Stephens

Abstract. An information content analysis is used to select channels for a marine liquid cloud retrieval using the high-spectral-resolution oxygen A-band instrument on NASA’s Orbiting Carbon Observatory-2 (OCO-2). Desired retrieval properties are cloud optical depth, cloud pressure thickness and cloud-top pressure and the optimal channels depend on the atmospheric state, cloud properties and position within the OCO-2 swath. Based on information content criteria we select a micro-window of 75 of the 853 functioning OCO-2 channels spanning 763.5–764.6 nm and perform a series of synthetic retrievals with perturbed initial conditions. We estimate posterior errors from the sample standard deviations and obtain ±0.75 in optical depth, ±12.9 hPa in both cloud-top pressure and cloud pressure thickness, although removing the 10 % of samples with the highest χ2 reduces posterior error in cloud-top pressure to ±2.9 hPa and cloud pressure thickness to ±2.5 hPa. The application of this retrieval to real OCO-2 measurements is briefly discussed, along with limitations and the greatest caution is urged regarding the assumption of a single homogeneous cloud layer, which is often, but not always, a reasonable approximation for marine boundary layer clouds.


2014 ◽  
Vol 14 (16) ◽  
pp. 8389-8401 ◽  
Author(s):  
J. C. Chiu ◽  
J. A. Holmes ◽  
R. J. Hogan ◽  
E. J. O'Connor

Abstract. We have extensively analysed the interdependence between cloud optical depth, droplet effective radius, liquid water path (LWP) and geometric thickness for stratiform warm clouds using ground-based observations. In particular, this analysis uses cloud optical depths retrieved from untapped solar background signals that are previously unwanted and need to be removed in most lidar applications. Combining these new optical depth retrievals with radar and microwave observations at the Atmospheric Radiation Measurement (ARM) Climate Research Facility in Oklahoma during 2005–2007, we have found that LWP and geometric thickness increase and follow a power-law relationship with cloud optical depth regardless of the presence of drizzle; LWP and geometric thickness in drizzling clouds can be generally 20–40% and at least 10% higher than those in non-drizzling clouds, respectively. In contrast, droplet effective radius shows a negative correlation with optical depth in drizzling clouds and a positive correlation in non-drizzling clouds, where, for large optical depths, it asymptotes to 10 μm. This asymptotic behaviour in non-drizzling clouds is found in both the droplet effective radius and optical depth, making it possible to use simple thresholds of optical depth, droplet size, or a combination of these two variables for drizzle delineation. This paper demonstrates a new way to enhance ground-based cloud observations and drizzle delineations using existing lidar networks.


2014 ◽  
Vol 14 (7) ◽  
pp. 8963-8996
Author(s):  
J. C. Chiu ◽  
J. A. Holmes ◽  
R. J. Hogan ◽  
E. J. O'Connor

Abstract. We have extensively analysed the interdependence between cloud optical depth, droplet effective radius, liquid water path (LWP) and geometric thickness for stratiform warm clouds using ground-based observations. In particular, this analysis uses cloud optical depths retrieved from untapped solar background signal that is previously unwanted and needs to be removed in most lidar applications. Combining these new optical depth retrievals with radar and microwave observations at the Atmospheric Radiation Measurement (ARM) Climate Research Facility in Oklahoma during 2005–2007, we have found that LWP and geometric thickness increase and follow a power-law relationship with cloud optical depth regardless of the presence of drizzle; LWP and geometric thickness in drizzling clouds can be generally 20–40% and at least 10% higher than those in non-drizzling clouds, respectively. In contrast, droplet effective radius shows a negative correlation with optical depth in drizzling clouds, while it increases with optical depth and reaches an asymptote of 10 μm in non-drizzling clouds. This asymptotic behaviour in non-drizzling clouds is found in both droplet effective radius and optical depth, making it possible to use simple thresholds of optical depth, droplet size, or a combination of these two variables for drizzle delineation. This paper demonstrates a new way to enhance ground-based cloud observations and drizzle delineations using existing lidar networks.


2019 ◽  
Vol 12 (3) ◽  
pp. 1717-1737 ◽  
Author(s):  
Mark Richardson ◽  
Jussi Leinonen ◽  
Heather Q. Cronk ◽  
James McDuffie ◽  
Matthew D. Lebsock ◽  
...  

Abstract. This paper introduces the OCO2CLD-LIDAR-AUX product, which uses the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar and the Orbiting Carbon Observatory-2 (OCO-2) hyperspectral A-band spectrometer. CALIPSO provides a prior cloud top pressure (Ptop) for an OCO-2-based retrieval of cloud optical depth, Ptop and cloud geometric thickness expressed in hPa. Measurements are of single-layer liquid clouds over oceans from September 2014 to December 2016 when collocated data are available. Retrieval performance is best for solar zenith angles <45∘ and when the cloud phase classification, which also uses OCO-2's weak CO2 band, is more confident. The highest quality optical depth retrievals agree with those from the Moderate Resolution Imaging Spectroradiometer (MODIS) with discrepancies smaller than the MODIS-reported uncertainty. Retrieved thicknesses are consistent with a substantially subadiabatic structure over marine stratocumulus regions, in which extinction is weighted towards the cloud top. Cloud top pressure in these clouds shows a 4 hPa bias compared with CALIPSO which we attribute mainly to the assumed vertical structure of cloud extinction after showing little sensitivity to the presence of CALIPSO-identified aerosol layers or assumed cloud droplet effective radius. This is the first case of success in obtaining internal cloud structure from hyperspectral A-band measurements and exploits otherwise unused OCO-2 data. This retrieval approach should provide additional constraints on satellite-based estimates of cloud droplet number concentration from visible imagery, which rely on parameterization of the cloud thickness.


2018 ◽  
Author(s):  
Mark Richardson ◽  
Jussi Leinonen ◽  
Heather Q. Cronk ◽  
James McDuffie ◽  
Matthew D. Lebsock ◽  
...  

Abstract. This paper introduces the OCO2CLD-LIDAR-AUX product, which uses the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar and the Orbiting Carbon Observatory-2 (OCO-2) hyperspectral A-band spectrometer. CALIPSO provides a prior cloud top pressure (Ptop) for an OCO-2 based retrieval of cloud optical depth, Ptop and cloud geometric thickness expressed in hPa. Measurements are of single-layer liquid clouds over oceans from September 2014 to December 2016 when collocated data are available. Retrieval performance is best for solar zenith angle


2020 ◽  
Vol 12 (24) ◽  
pp. 4171
Author(s):  
Xinlu Xia ◽  
Xiaolei Zou

The Hyperspectral Infrared Atmospheric Sounder (HIRAS) onboard the Feng Yun-3D (FY-3D) satellite is the first Chinese hyperspectral infrared instrument. In this study, an improved cloud detection scheme using brightness temperature observations from paired HIRAS long-wave infrared (LWIR) and short-wave infrared (SWIR) channels at CO2 absorption bands (15-μm and 4.3-μm) is developed. The weighting function broadness and a set of height-dependent thresholds of cloud-sensitive-level differences are incorporated into pairing LWIR and SWIR channels. HIRAS brightness temperature observations made under clear-sky conditions during a training period are used to develop a set of linear regression equations between paired LWIR and SWIR channels. Moderate-resolution Imaging Spectroradiometer (MODIS) cloud mask data are used for selecting HIRAS clear-sky observations. Cloud Emission and Scattering Indices (CESIs) are defined as the differences in SWIR channels between HIRAS observations and regression simulations from LWIR observations. The cloud retrieval products of ice cloud optical depth and cloud-top pressure from the Atmospheric Infrared Sounder (AIRS) are used to illustrate the effectiveness of the proposed cloud detection scheme for FY-3D HIRAS observations. Results show that the distributions of modified CESIs at different altitudes can capture features in the distributions of AIRS-retrieved ice cloud optical depth and cloud-top pressure better than the CESIs obtained by the original method.


2012 ◽  
Vol 51 (7) ◽  
pp. 1407-1425 ◽  
Author(s):  
Anne Garnier ◽  
Jacques Pelon ◽  
Philippe Dubuisson ◽  
Michaël Faivre ◽  
Olivier Chomette ◽  
...  

AbstractThe paper describes the operational analysis of the Imaging Infrared Radiometer (IIR) data, which have been collected in the framework of the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission for the purpose of retrieving high-altitude (above 7 km) cloud effective emissivity and optical depth that can be used in synergy with the vertically resolved Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) collocated observations. After an IIR scene classification is built under the CALIOP track, the analysis is applied to features detected by CALIOP when found alone in the atmospheric column or when CALIOP identifies an opaque layer underneath. The fast-calculation radiative transfer (FASRAD) model fed by ancillary meteorological and surface data is used to compute the different components involved in the effective emissivity retrievals under the CALIOP track. The track analysis is extended to the IIR swath using homogeneity criteria that are based on radiative equivalence. The effective optical depth at 12.05 μm is shown to be a good proxy for about one-half of the cloud optical depth, allowing direct comparisons with other databases in the visible spectrum. A step-by-step quantitative sensitivity and performance analysis is provided. The method is validated through comparisons of collocated IIR and CALIOP optical depths for elevated single-layered semitransparent cirrus clouds, showing excellent agreement (within 20%) for values ranging from 1 down to 0.05. Uncertainties have been determined from the identified error sources. The optical depth distribution of semitransparent clouds is found to have a nearly exponential shape with a mean value of about 0.5–0.6.


2021 ◽  
Vol 14 (7) ◽  
pp. 5107-5126
Author(s):  
Hartwig Deneke ◽  
Carola Barrientos-Velasco ◽  
Sebastian Bley ◽  
Anja Hünerbein ◽  
Stephan Lenk ◽  
...  

Abstract. The modification of an existing cloud property retrieval scheme for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument on board the geostationary Meteosat satellites is described to utilize its high-resolution visible (HRV) channel for increasing the spatial resolution of its physical outputs. This results in products with a nadir spatial resolution of 1×1 km2 compared to the standard 3×3 km2 resolution offered by the narrowband channels. This improvement thus greatly reduces the resolution gap between current geostationary and polar-orbiting meteorological satellite imagers. In the first processing step, cloudiness is determined from the HRV observations by a threshold-based cloud masking algorithm. Subsequently, a linear model that links the 0.6 µm, 0.8 µm, and HRV reflectances provides a physical constraint to incorporate the spatial high-frequency component of the HRV observations into the retrieval of cloud optical depth. The implementation of the method is described, including the ancillary datasets used. It is demonstrated that the omission of high-frequency variations in the cloud-absorbing 1.6 µm channel results in comparatively large uncertainties in the retrieved cloud effective radius, likely due to the mismatch in channel resolutions. A newly developed downscaling scheme for the 1.6 µm reflectance is therefore applied to mitigate the effects of this scale mismatch. Benefits of the increased spatial resolution of the resulting SEVIRI products are demonstrated for three example applications: (i) for a convective cloud field, it is shown that significantly better agreement between the distributions of cloud optical depth retrieved from SEVIRI and from collocated MODIS observations is achieved. (ii) The temporal evolution of cloud properties for a growing convective storm at standard and HRV spatial resolutions are compared, illustrating an improved contrast in growth signatures resulting from the use of the HRV channel. (iii) An example of surface solar irradiance, determined from the retrieved cloud properties, is shown, for which the HRV channel helps to better capture the large spatiotemporal variability induced by convective clouds. These results suggest that incorporating the HRV channel into the retrieval has potential for improving Meteosat-based cloud products for several application domains.


2021 ◽  
pp. 1-42
Author(s):  
George Tselioudis ◽  
William. B. Rossow ◽  
Christian Jakob ◽  
Jasmine Remillard ◽  
Derek Tropf ◽  
...  

AbstractA clustering methodology is applied to cloud optical depth cloud top pressure (TAU-PC) histograms from the new, 1-degree resolution, ISCCP-H dataset, to derive an updated global Weather State (WS) dataset. Then, PC-TAU histograms from current-climate CMIP6 model simulations are assigned to the ISCCP-H WSs along with their concurrent radiation and precipitation properties, to evaluate model cloud, radiation, and precipitation properties in the context of the Weather States. The new ISCCP-H analysis produces WSs that are very similar to those previously found in the lower resolution ISCCP-D dataset. The main difference lies in the splitting of the ISCCP-D thin stratocumulus WS between the ISCCP-H shallow cumulus and stratocumulus WSs, which results in the reduction by one of the total WS number. The evaluation of the CMIP6 models against the ISCCP-H Weather States, shows that, in the ensemble mean, the models are producing an adequate representation of the frequency and geographical distribution of the WSs, with measurable improvements compared to the WSs derived for the CMIP5 ensemble. However, the frequency of shallow cumulus clouds continues to be underestimated, and, in some WSs the good agreement of the ensemble mean with observations comes from averaging models that significantly overpredict and underpredict the ISCCP-H WS frequency. In addition, significant biases exist in the internal cloud properties of the model WSs, such as the model underestimation of cloud fraction in middle-top clouds and secondarily in midlatitude storm and stratocumulus clouds, that result in an underestimation of cloud SW cooling in those regimes.


Sign in / Sign up

Export Citation Format

Share Document