scholarly journals A high-resolution time-of-flight chemical ionization mass spectrometer utilizing hydronium ions (H<sub>3</sub>O<sup>+</sup> ToF-CIMS) for measurements of volatile organic compounds in the atmosphere

Author(s):  
Bin Yuan ◽  
Abigail Koss ◽  
Carsten Warneke ◽  
Jessica B. Gilman ◽  
Brian M. Lerner ◽  
...  

Abstract. Proton transfer reactions between hydronium ions (H3O+) and volatile organic compounds (VOCs) provide a fast and high sensitive measurement technique for VOCs, leading to extensive use of proton-transfer-reaction mass spectrometry (PTR-MS) in atmospheric research. Based on the same ionization approach, we describe the development of a high-resolution (HR) time of flight chemical ionization mass spectrometer (ToF-CIMS) utilizing H3O+ as the reagent ions. The new H3O+ ToF-CIMS has sensitivities of 100–1000 cps/ppb (ion counts per second per part-per-billion mixing ratio of VOC) and detection limits of 20–600 ppt at 3σ for a 1-second integration time for simultaneous measurements of many VOC species of atmospheric relevance. Compared with similar instruments with quadrupole mass spectrometer, e.g. proton-transfer-reaction mass spectrometers, the ToF analyzer with mass resolution (m/Δm) of up to 6000 not only increases measurement frequency of the instrument, but also expands the number of measurable species. The humidity dependence of the instrument was characterized for various VOC species and the behaviors for different species can be explained by compound-specific properties that affect the ion chemistry. The new H3O+ ToF-CIMS was successfully deployed on the NOAA WP-3D research aircraft for the SONGNEX campaign in spring of 2015. The measured mixing ratios of several aromatics from the H3O+ ToF-CIMS agreed within ±10 % with independent gas chromatography (GC) measurements from whole air samples. Initial results from the SONGNEX measurements demonstrate that the H3O+ ToF-CIMS dataset will be valuable for the identification and characterization of emissions from various sources, investigation of secondary formation of many photochemical organic products and therefore the chemical evolution of gas-phase organic carbon in the atmosphere.

Ocean Science ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 925-940 ◽  
Author(s):  
Charel Wohl ◽  
David Capelle ◽  
Anna Jones ◽  
William T. Sturges ◽  
Philip D. Nightingale ◽  
...  

Abstract. We present a technique that utilises a segmented flow coil equilibrator coupled to a proton-transfer-reaction mass spectrometer to measure a broad range of dissolved volatile organic compounds. Thanks to its relatively large surface area for gas exchange, small internal volume, and smooth headspace–water separation, the equilibrator is highly efficient for gas exchange and has a fast response time (under 1 min). The system allows for both continuous and discrete measurements of volatile organic compounds in seawater due to its low sample water flow (100 cm3 min−1) and the ease of changing sample intake. The equilibrator setup is both relatively inexpensive and compact. Hence, it can be easily reproduced and installed on a variety of oceanic platforms, particularly where space is limited. The internal area of the equilibrator is smooth and unreactive. Thus, the segmented flow coil equilibrator is expected to be less sensitive to biofouling and easier to clean than membrane-based equilibration systems. The equilibrator described here fully equilibrates for gases that are similarly soluble or more soluble than toluene and can easily be modified to fully equilibrate for even less soluble gases. The method has been successfully deployed in the Canadian Arctic. Some example data from underway surface water and Niskin bottle measurements in the sea ice zone are presented to illustrate the efficacy of this measurement system.


2019 ◽  
Author(s):  
Charel Wohl ◽  
David Capelle ◽  
Anna Jones ◽  
William T. Sturges ◽  
Phillip D. Nightingale ◽  
...  

Abstract. Here we present a technique that utilises a segmented flow coil equilibrator coupled to a Proton Transfer Reaction-Mass Spectrometer to measure a broad range of dissolved organic gases. Due to its unique design composed of a segmented flow and a headspace-water separator, the equilibrator is highly efficient for gas exchange and has a fast response time (under 1 min). The system allows for both discrete and continuous measurements of volatile organic compounds in seawater due to its ease of changing sample intake and low sample water flow (100 cm3 min-1). The equilibrator setup is both relatively inexpensive and compact. Hence it can be easily reproduced and installed on a variety of oceanic platforms, particularly where space is limited. As a result of its smooth and unreactive surfaces, the segmented flow coil equilibrator is expected to be less sensitive to biofouling and easier to clean than membrane-based equilibration systems. The equilibrator fully equilibrates for gases that are similarly soluble or more soluble than toluene. The method has been successfully deployed in the Canadian Arctic. Here, some example data of underway surface water and Niskin bottle measurements in the sea ice zone are presented to illustrate the efficacy of this measurement system.


Sign in / Sign up

Export Citation Format

Share Document