scholarly journals Supplementary material to "Development of an online-coupled MARGA upgrade for the two-hourly quantification of low-molecular weight organic acids in the gas and particle-phase"

Author(s):  
Bastian Stieger ◽  
Gerald Spindler ◽  
Dominik van Pinxteren ◽  
Achim Grüner ◽  
Markus Wallasch ◽  
...  
2018 ◽  
Author(s):  
Bastian Stieger ◽  
Gerald Spindler ◽  
Dominik van Pinxteren ◽  
Achim Grüner ◽  
Markus Wallasch ◽  
...  

Abstract. A method is presented to quantify the low-molecular weight organic acids formic, acetic, propionic, butyric, pyruvic, glycolic, oxalic, malonic, succinic, malic, glutaric, and methanesulfonic acid in the atmospheric gas and particle phase in a two-hourly time resolution, based on a combination of the Monitor for AeRosols and Gases in ambient Air (MARGA) and an additional ion chromatography (IC) instrument. A proper separation of the organic target acids was initially tackled by a laboratory IC optimization study, testing different separation columns, eluent compositions and eluent flow rates both for isocratic and for gradient elution. Satisfactory resolution of all compounds was achieved using a gradient system with two coupled anion exchange separation columns. Online pre-concentration with an enrichment factor of approximately 400 was achieved by solid phase extraction consisting of a methacrylate polymer based sorbent with quaternary ammonium groups. The limits of detection of the method range between 7.1 ng m−3 for methanesulfonate and 150.3 ng m−3 for pyruvate. Precisions are below 1.0 %, except for glycolate (2.9 %) and succinate (1.0 %). Comparisons of inorganic anions measured at the TROPOS research site in Melpitz, Germany, by the original MARGA and the additional organic acid IC systems are in agreement with each other (R2 = 0.95 − 0.99). Organic acid concentrations from May 2017 as an example period are presented. Monocarboxylic acids were dominant in the gas phase with mean concentrations of 553 ng m−3 for acetic acid, followed by formic (286 ng m−3), pyruvic acid (182 ng m−3), propionic (179 ng m−3), butyric (98 ng m−3) and glycolic (71 ng  m−3). Particulate glycolate, oxalate and methanesulfonate were quantified with mean concentrations of 63 ng  m−3, 74 ng m−3 and 35 ng m−3, respectively. Elevated concentrations in the late afternoon of gas phase formic acid and particulate oxalate indicate a photochemical formation.


THE BULLETIN ◽  
2021 ◽  
Vol 2 (390) ◽  
pp. 12-17
Author(s):  
A. Grozina

The research aimed to determine the effect of a mixture of low molecular weight organic acids and complex phytobiotics when replacing a feed antibiotic with them on the activity of digestive enzymes in the duode-nal chyme and the activity of pancreatic enzymes in the blood plasma of young stock B5 and B9 meat chicken lines. The experiments were carried out on the original lines of meat poultry lines B5 (Cornish) and B9 (Plymouth rock). There was an operation to insert a cannula into the duodenum at the age of 6 weeks. The enzymatic activity of the duodenum chyme and the content of pancreatic enzymes in the blood plasma in the groups of chickens receiving antibiotics, low molecular weight organic acids, and phytobiotics with the diet. The data showed that the influence of feed additives on the physiological status of poultry was different. The use of low molecular weight organic acids of the B5 and B9 chicken lines had a significant effect on the production of digestive enzymes due to an increase in the activity of chyme lipase (by 98.3%) and blood plasma lipase (by 26.6%) in B9 chickens and an increase in chyme proteases (by 30.9%) in B5 chickens compared with the control group, where the antibiotic was used. The introduction of complex phytobiotics into the diet had a negative effect on chickens of the B5 line (Cornish), reducing the activity of amylase and lipase of the duodenal chyme (by 29.2 and 26.9%) compared with the control group. In B9 (Plymouth rock) chickens, only the chyme amylase activity increased by 30.8% that indicates an improvement in the availability of feed carbohydrates. These data confirm the need to take into account the different effects of feed additives on the digestion processes in different poultry crosses.


2018 ◽  
Vol 2 ◽  
pp. 66
Author(s):  
Adil Mihoub ◽  
Mustapha Daddi Bouhoun ◽  
Asif Naeem

Phosphate reactions and retention in the soil are of paramount importance from the perspective of plant nutrition and fertilizer use efficiency. The objective of this work was to investigate the effect of some low molecular weight organic acids (LMWOAs) on phosphorus release kinetic and its availability in calcareous soil. Experiments were conducted in laboratory. Soil-limestone mixtures were prepared to achieve highly calcareous samples (i.e. 50% CaCO3). The prepared samples were mixed thoroughly with phosphate fertilizers i.e. Triple super phosphate (TSP) and Monoammonium Phosphate (MAP) and watered with distilled water only (CK), with citric acid solution (CA) and with oxalic acid solution (OA). The treatments were arranged in a CRD with three replications and incubated at 25 ± 2°C and 80% soil moisture for a period of 960 h. The parabolic model was used for describing the decrease in P with time. As a result, all treatments showed a significant decrease in available P with time. Using LMWOAs showed important results and combination of phosphate fertilizers with both LMWOAs solutions exerted a very favorable effect on P availability in soil. The parabolic diffusion equation used was fitted well to experimental data. Addition of LMWOAs decreased loss in extractability of P with increasing soil available phosphorus fraction. Moreover, treatments irrigated by LMWOAs solutions released a lot of phosphorus compared to untreated treatments.


2013 ◽  
Vol 46 (6) ◽  
pp. 654-659 ◽  
Author(s):  
E. V. Shamrikova ◽  
I. V. Gruzdev ◽  
V. V. Punegov ◽  
F. M. Khabibullina ◽  
O. S. Kubik

Sign in / Sign up

Export Citation Format

Share Document