scholarly journals Supplementary material to "Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign"

Author(s):  
Nicola Bodini ◽  
Julie K. Lundquist ◽  
Rob K. Newsom
2020 ◽  
Vol 12 (17) ◽  
pp. 2802
Author(s):  
Igor N. Smalikho ◽  
Viktor A. Banakh

A method for estimation of the turbulent energy dissipation rate from measurements by a conically scanning pulsed coherent Doppler lidar (PCDL), with allowance for the wind transport of turbulent velocity fluctuations, has been developed. The method has been tested in comparative atmospheric experiments with a Stream Line PCDL (Halo Photonics, Brockamin, Worcester, United Kingdom) and a sonic anemometer. It has been demonstrated that the method provides unbiased estimates of the dissipation rate at arbitrarily large ratios of the mean wind velocity to the linear scanning speed.


2018 ◽  
Vol 146 (1) ◽  
pp. 351-371 ◽  
Author(s):  
Domingo Muñoz-Esparza ◽  
Robert D. Sharman ◽  
Julie K. Lundquist

Abstract A better understanding and prediction of turbulence dissipation rate ε in the atmospheric boundary layer (ABL) is important for many applications. Herein, sonic anemometer data from the Experimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign (March–May 2015) are used to derive energy dissipation rate (EDR; =) within the first 300 m above the ground employing second-order structure functions. Turbulence dissipation rate is found to be strongly driven by the diurnal evolution of the ABL, presenting a distinct statistical behavior between daytime and nighttime conditions that follows log–Weibull and lognormal distributions, respectively. In addition, the vertical structure of EDR is characterized by a decrease with height above the surface, with the largest gradients occurring within the surface layer (z < 50 m). Convection-permitting mesoscale simulations were carried out with all of the 1.5-order turbulent kinetic energy (TKE) closure planetary boundary layer (PBL) schemes available in the Weather Research and Forecasting (WRF) Model. Overall, the three PBL schemes capture the observed diurnal evolution of EDR as well as the statistical behavior and vertical structure. However, the Mellor–Yamada-type schemes underestimate the large EDR levels during the bulk of daytime conditions, with the quasi-normal scale elimination (QNSE) scheme providing the best agreement with observations. During stably stratified nighttime conditions, Mellor–Yamada–Janjić (MYJ) and QNSE tend to exhibit an artificial “clipping” to their background TKE levels. A reduction in the model constant in the dissipation term for the Mellor–Yamada–Nakanishi–Niino (MYNN) scheme did not have a noticeable impact on EDR estimates. In contrast, application of a postprocessing statistical remapping technique reduced the systematic negative bias in the MYNN results by 75%.


2018 ◽  
Vol 11 (7) ◽  
pp. 4291-4308 ◽  
Author(s):  
Nicola Bodini ◽  
Julie K. Lundquist ◽  
Rob K. Newsom

Abstract. Despite turbulence being a fundamental transport process in the boundary layer, the capability of current numerical models to represent it is undermined by the limits of the adopted assumptions, notably that of local equilibrium. Here we leverage the potential of extensive observations in determining the variability in turbulence dissipation rate (ϵ). These observations can provide insights towards the understanding of the scales at which the major assumption of local equilibrium between generation and dissipation of turbulence is invalid. Typically, observations of ϵ require time- and labor-intensive measurements from sonic and/or hot-wire anemometers. We explore the capability of wind Doppler lidars to provide measurements of ϵ. We refine and extend an existing method to accommodate different atmospheric stability conditions. To validate our approach, we estimate ϵ from four wind Doppler lidars during the 3-month XPIA campaign at the Boulder Atmospheric Observatory (Colorado), and we assess the uncertainty of the proposed method by data intercomparison with sonic anemometer measurements of ϵ. Our analysis of this extensive dataset provides understanding of the climatology of turbulence dissipation over the course of the campaign. Further, the variability in ϵ with atmospheric stability, height, and wind speed is also assessed. Finally, we present how ϵ increases as nocturnal turbulence is generated during low-level jet events.


2018 ◽  
Author(s):  
Nicola Bodini ◽  
Julie K. Lundquist ◽  
Rob K. Newsom

Abstract. Despite turbulence being a fundamental transport process in the boundary layer, the capability of current numerical models to represent it is undermined by the limits of the adopted assumptions, notably that of local equilibrium. Here we leverage the potential of extensive observations in determining the variability of turbulence dissipation rate (ε). These observations can provide insights towards the understanding of the scales at which the major assumption of local equilibrium between generation and dissipation of turbulence is invalid. Typically, observations of ε require time- and labor-intensive measurements from sonic and/or hot-wire anemometers. We explore the capability of wind Doppler lidars to provide measurements of ε. We refine and extend an existing method to accommodate different atmospheric stability conditions. To validate our approach, we estimate ε from four wind Doppler lidars during the 3-month XPIA campaign at the Boulder Atmospheric Observatory (Colorado), and we assess the uncertainty of the proposed method by data inter-comparison with sonic anemometer measurements of ε. Our analysis of this extensive dataset provides understanding of the climatology of turbulence dissipation over the course of the campaign. Further, the variability of ε with atmospheric stability, height, and wind speed is also assessed. Finally, we present how ε increases as nocturnal turbulence is generated during low-level jet events.


2019 ◽  
Author(s):  
Shu Yang ◽  
Guðrún Nína Petersen ◽  
Sibylle von Löwis ◽  
Jana Preißler ◽  
David Christian Finger

1998 ◽  
Vol 88 (3) ◽  
pp. 343-361 ◽  
Author(s):  
Philippe Drobinski ◽  
Robert a. Brown ◽  
Pierre H. Flamant ◽  
Jacques Pelon

Sign in / Sign up

Export Citation Format

Share Document