scholarly journals Evaluation of a Method for Converting SAGE Extinction Coefficients to Backscatter Coefficient for Intercomparison with LIDAR Observations

2020 ◽  
Author(s):  
Travis N. Knepp ◽  
Larry Thomason ◽  
Marilee Roell ◽  
Robert Damadeo ◽  
Kevin Leavor ◽  
...  

Abstract. Aerosol backscatter coefficients were calculated using multi-wavelength aerosol extinction products from the SAGE II and SAGE III/ISS instruments. The conversion methodology is presented followed by an evaluation of the conversion algorithm's robustness. The SAGE-based backscatter products were compared to backscatter coefficients derived from ground-based lidar at three sites (Table Mountain Facility, Mauna Loa, and Observatoire de Haute-Provence). This evaluation includes the major eruption of Mt. Pinatubo in 1991 followed by the atmospherically quiescent period beginning in the late nineties. Recommendations are made regarding the use of this method for evaluation of aerosol extinction profiles collected using the occultation method.

2020 ◽  
Vol 13 (8) ◽  
pp. 4261-4276
Author(s):  
Travis N. Knepp ◽  
Larry Thomason ◽  
Marilee Roell ◽  
Robert Damadeo ◽  
Kevin Leavor ◽  
...  

Abstract. Aerosol backscatter coefficients were calculated using multiwavelength aerosol extinction products from the SAGE II and III/ISS instruments (SAGE: Stratospheric Aerosol and Gas Experiment). The conversion methodology is presented, followed by an evaluation of the conversion algorithm's robustness. The SAGE-based backscatter products were compared to backscatter coefficients derived from ground-based lidar at three sites (Table Mountain Facility, Mauna Loa, and Observatoire de Haute-Provence). Further, the SAGE-derived lidar ratios were compared to values from previous balloon and theoretical studies. This evaluation includes the major eruption of Mt. Pinatubo in 1991, followed by the atmospherically quiescent period beginning in the late 1990s. Recommendations are made regarding the use of this method for evaluation of aerosol extinction profiles collected using the occultation method.


2009 ◽  
Vol 2 (2) ◽  
pp. 513-522 ◽  
Author(s):  
R. E. Mamouri ◽  
V. Amiridis ◽  
A. Papayannis ◽  
E. Giannakaki ◽  
G. Tsaknakis ◽  
...  

Abstract. We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite- Level 1 attenuated backscatter coefficient profiles, using coincident observations performed with a ground-based lidar in Athens, Greece (37.9° N, 23.6° E). A multi-wavelength ground-based backscatter/Raman lidar system is operating since 2000 at the National Technical University of Athens (NTUA) in the framework of the European Aerosol Research LIdar NETwork (EARLINET), the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 40 coincidental aerosol ground-based lidar measurements were performed over Athens during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground–based lidar measurements was approximately two hours, centred on the satellite overpass time. From the analysis of the ground-based/satellite correlative lidar measurements, a mean bias of the order of 22% for daytime measurements and of 8% for nighttime measurements with respect to the CALIPSO profiles was found for altitudes between 3 and 10 km. The mean bias becomes much larger for altitudes lower that 3 km (of the order of 60%) which is attributed to the increase of aerosol horizontal inhomogeneity within the Planetary Boundary Layer, resulting to the observation of possibly different air masses by the two instruments. In cases of aerosol layers underlying Cirrus clouds, comparison results for aerosol tropospheric profiles become worse. This is attributed to the significant multiple scattering effects in Cirrus clouds experienced by CALIPSO which result in an attenuation which is less than that measured by the ground-based lidar.


2011 ◽  
Vol 11 (8) ◽  
pp. 3981-4000 ◽  
Author(s):  
M. Kacenelenbogen ◽  
M. A. Vaughan ◽  
J. Redemann ◽  
R. M. Hoff ◽  
R. R. Rogers ◽  
...  

Abstract. The Cloud Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the CALIPSO platform, has measured profiles of total attenuated backscatter coefficient (level 1 products) since June 2006. CALIOP's level 2 products, such as the aerosol backscatter and extinction coefficient profiles, are retrieved using a complex succession of automated algorithms. The goal of this study is to help identify potential shortcomings in the CALIOP version 2 level 2 aerosol extinction product and to illustrate some of the motivation for the changes that have been introduced in the next version of CALIOP data (version 3, released in June 2010). To help illustrate the potential factors contributing to the uncertainty of the CALIOP aerosol extinction retrieval, we focus on a one-day, multi-instrument, multiplatform comparison study during the CALIPSO and Twilight Zone (CATZ) validation campaign on 4 August 2007. On that day, we observe a consistency in the Aerosol Optical Depth (AOD) values recorded by four different instruments (i.e. space-borne MODerate Imaging Spectroradiometer, MODIS: 0.67 and POLarization and Directionality of Earth's Reflectances, POLDER: 0.58, airborne High Spectral Resolution Lidar, HSRL: 0.52 and ground-based AErosol RObotic NETwork, AERONET: 0.48 to 0.73) while CALIOP AOD is a factor of two lower (0.32 at 532 nm). This case study illustrates the following potential sources of uncertainty in the CALIOP AOD: (i) CALIOP's low signal-to-noise ratio (SNR) leading to the misclassification and/or lack of aerosol layer identification, especially close to the Earth's surface; (ii) the cloud contamination of CALIOP version 2 aerosol backscatter and extinction profiles; (iii) potentially erroneous assumptions of the aerosol extinction-to-backscatter ratio (Sa) used in CALIOP's extinction retrievals; and (iv) calibration coefficient biases in the CALIOP daytime attenuated backscatter coefficient profiles. The use of version 3 CALIOP extinction retrieval for our case study seems to partially fix factor (i) although the aerosol retrieved by CALIOP is still somewhat lower than the profile measured by HSRL; the cloud contamination (ii) appears to be corrected; no particular change is apparent in the observation-based CALIOP Sa value (iii). Our case study also showed very little difference in version 2 and version 3 CALIOP attenuated backscatter coefficient profiles, illustrating a minor change in the calibration scheme (iv).


2010 ◽  
Vol 10 (11) ◽  
pp. 27967-28015 ◽  
Author(s):  
M. Kacenelenbogen ◽  
M. A. Vaughan ◽  
J. Redemann ◽  
R. M. Hoff ◽  
R. R. Rogers ◽  
...  

Abstract. The Cloud Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the CALIPSO platform, has measured profiles of total attenuated backscatter coefficient (level 1 products) since June 2006. CALIOP's level 2 products, such as the aerosol backscatter and extinction coefficient profiles, are retrieved using a complex succession of automated algorithms. The goal of this study is to help identify potential shortcomings in the CALIOP version 2 level 2 aerosol extinction product and to illustrate some of the motivation for the changes that will be introduced in the next version of CALIOP data (version 3, currently being processed). As a first step, we compared CALIOP version 2-derived AOD with the collocated MODerate Imaging Spectroradiometer (MODIS) AOD retrievals over the Continental United States. The best statistical agreement between those two quantities was found over the Eastern part of the United States with, nonetheless, a weak correlation (R ~0.4) and an apparent CALIOP version 2 underestimation (by ~66%) of MODIS AOD. To help quantify the potential factors contributing to the uncertainty of the CALIOP aerosol extinction retrieval, we then focused on a one-day, multi-instrument, multiplatform comparison study during the CALIPSO and Twilight Zone (CATZ) validation campaign on August 04, 2007. This case study illustrates the following potential reasons for a bias in the CALIOP AOD: (i) CALIOP's low signal-to-noise ratio (SNR) leading to the misclassification and/or lack of aerosol layer identification, especially close to the Earth's surface; (ii) the cloud contamination of CALIOP version 2 aerosol backscatter and extinction profiles; (iii) potentially erroneous assumptions of the backscatter-to-extinction ratio (Sa) used in CALIOP's extinction retrievals; and (iv) calibration coefficient biases in the CALIOP daytime attenuated backscatter coefficient profiles.


2020 ◽  
Vol 237 ◽  
pp. 07025
Author(s):  
Peristera Paschou ◽  
Emmanouil Proestakis ◽  
Alexandra Tsekeri ◽  
Nikos Siomos ◽  
Antonis Gkikas ◽  
...  

We present the EVE lidar concept, a combined linear/circular polarization system, tailored to evaluate the spaceborne ALADIN Doppler lidar system aerosol retrievals. EVE, currently under development, aims to provide the ESA-Aeolus mission with a flexible, mobile reference ground-based lidar system capable of providing well-characterized fiducial reference measurements of aerosol optical properties. Since ALADIN detects only the co-polar component of the backscattered circularly polarized radiation, a portion of the received radiation gets lost, leading to an un-derestimation of the backscatter coefficient and the circular depolarization ratio in strongly depolarizing scenes with non-spherical particles. The main focus of the new EVE lidar is to quantify these uncertainties and to evaluate aerosol backscatter/extinction retrievals for Aeolus, and later also for EarthCARE product validation, quality assessment and improvement.


Author(s):  
Hongzhu Ji ◽  
Yinchao Zhang ◽  
Siying Chen ◽  
He Chen ◽  
Pan Guo ◽  
...  

2016 ◽  
Vol 16 (4) ◽  
pp. 2155-2174 ◽  
Author(s):  
Franco Marenco ◽  
Ben Johnson ◽  
Justin M. Langridge ◽  
Jane Mulcahy ◽  
Angela Benedetti ◽  
...  

Abstract. Lidar observations of smoke aerosols have been analysed from six flights of the Facility for Airborne Atmospheric Measurements BAe-146 research aircraft over Brazil during the biomass burning season (September 2012). A large aerosol optical depth (AOD) was observed, typically ranging 0.4–0.9, along with a typical aerosol extinction coefficient of 100–400 Mm−1. The data highlight the persistent and widespread nature of the Amazonian haze, which had a consistent vertical structure, observed over a large distance ( ∼ 2200 km) during a period of 14 days. Aerosols were found near the surface; but the larger aerosol load was typically found in elevated layers that extended from 1–1.5 to 4–6 km. The measurements have been compared to model predictions with the Met Office Unified Model (MetUM) and the ECMWF-MACC model. The MetUM generally reproduced the vertical structure of the Amazonian haze observed with the lidar. The ECMWF-MACC model was also able to reproduce the general features of smoke plumes albeit with a small overestimation of the AOD. The models did not always capture localised features such as (i) smoke plumes originating from individual fires, and (ii) aerosols in the vicinity of clouds. In both these circumstances, peak extinction coefficients of the order of 1000–1500 Mm−1 and AODs as large as 1–1.8 were encountered, but these features were either underestimated or not captured in the model predictions. Smoke injection heights derived from the Global Fire Assimilation System (GFAS) for the region are compatible with the general height of the aerosol layers.


1981 ◽  
Vol 20 (2) ◽  
pp. 184-194 ◽  
Author(s):  
R. L. Schwiesow ◽  
R. E. Cupp ◽  
V. E. Derr ◽  
E. W. Barrett ◽  
R. F. Pueschel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document