Enhanced inversion accuracy of aerosol backscatter coefficient based on simple de-noising operation

Author(s):  
Hongzhu Ji ◽  
Yinchao Zhang ◽  
Siying Chen ◽  
He Chen ◽  
Pan Guo ◽  
...  
1981 ◽  
Vol 20 (2) ◽  
pp. 184-194 ◽  
Author(s):  
R. L. Schwiesow ◽  
R. E. Cupp ◽  
V. E. Derr ◽  
E. W. Barrett ◽  
R. F. Pueschel ◽  
...  

2021 ◽  
Vol 21 (3) ◽  
pp. 2267-2285
Author(s):  
Simone Brunamonti ◽  
Giovanni Martucci ◽  
Gonzague Romanens ◽  
Yann Poltera ◽  
Frank G. Wienhold ◽  
...  

Abstract. Remote-sensing measurements by light detection and ranging (lidar) instruments are fundamental for the monitoring of altitude-resolved aerosol optical properties. Here we validate vertical profiles of aerosol backscatter coefficient (βaer) measured by two independent lidar systems using co-located balloon-borne measurements performed by Compact Optical Backscatter Aerosol Detector (COBALD) sondes. COBALD provides high-precision in situ measurements of βaer at two wavelengths (455 and 940 nm). The two analyzed lidar systems are the research Raman Lidar for Meteorological Observations (RALMO) and the commercial CHM15K ceilometer (Lufft, Germany). We consider in total 17 RALMO and 31 CHM15K profiles, co-located with simultaneous COBALD soundings performed throughout the years 2014–2019 at the MeteoSwiss observatory of Payerne (Switzerland). The RALMO (355 nm) and CHM15K (1064 nm) measurements are converted to 455 and 940 nm, respectively, using the Ångström exponent profiles retrieved from COBALD data. To account for the different receiver field-of-view (FOV) angles between the two lidars (0.01–0.02∘) and COBALD (6∘), we derive a custom-made correction using Mie-theory scattering simulations. Our analysis shows that both lidar instruments achieve on average a good agreement with COBALD measurements in the boundary layer and free troposphere, up to 6 km altitude. For medium-high-aerosol-content measurements at altitudes below 3 km, the mean ± standard deviation difference in βaer calculated from all considered soundings is −2 % ± 37 % (−0.018 ± 0.237 Mm−1 sr−1 at 455 nm) for RALMO−COBALD and +5 % ± 43 % (+0.009 ± 0.185 Mm−1 sr−1 at 940 mm) for CHM15K−COBALD. Above 3 km altitude, absolute deviations generally decrease, while relative deviations increase due to the prevalence of air masses with low aerosol content. Uncertainties related to the FOV correction and spatial- and temporal-variability effects (associated with the balloon's drift with altitude and different integration times) contribute to the large standard deviations observed at low altitudes. The lack of information on the aerosol size distribution and the high atmospheric variability prevent an accurate quantification of these effects. Nevertheless, the excellent agreement observed in individual profiles, including fine and complex structures in the βaer vertical distribution, shows that under optimal conditions, the discrepancies with the in situ measurements are typically comparable to the estimated statistical uncertainties in the remote-sensing measurements. Therefore, we conclude that βaer profiles measured by the RALMO and CHM15K lidar systems are in good agreement with in situ measurements by COBALD sondes up to 6 km altitude.


2019 ◽  
Author(s):  
Emmanouil Proestakis ◽  
Vassilis Amiridis ◽  
Eleni Marinou ◽  
Ioannis Binietoglou ◽  
Albert Ansmann ◽  
...  

Abstract. We present the evaluation activity of the European Aerosol Research Lidar Network (EARLINET) for the quantitative assessment of the Level 2 aerosol backscatter coefficient product derived by the Cloud-Aerosol Transport System (CATS) onboard the International Space Station (ISS). The study employs correlative CATS and EARLINET backscatter measurements within 50 km distance between the ground station and the ISS overpass and as close in time as possible, typically within 90 min, from February 2015 to September 2016. The results demonstrate the good agreement of CATS Level 2 backscatter coefficient and EARLINET. Three ISS overpasses close to the EARLINET stations of Leipzig-Germany, Évora-Portugal and Dushanbe-Tajikistan are analysed here to demonstrate the performance of CATS lidar system under different conditions. The results show that under cloud-free, relative homogeneous aerosol conditions CATS is in good agreement with EARLINET, independently of daytime/nighttime conditions. CATS low negative biases, partially attributed to the deficiency of lidar systems to detect tenuous aerosol layers of backscatter signal below the minimum detection thresholds, may lead to systematic deviations and slight underestimations of the total Aerosol Optical Depth (AOD) in climate studies. In addition, CATS misclassification of aerosol layers as clouds, and vice versa, in cases of coexistent and/or adjacent aerosol and cloud features, may lead to non-representative, unrealistic and cloud contaminated aerosol profiles. The distributions of backscatter coefficient biases show the relatively good agreement between the CATS and EARLINET measurements, although on average underestimations are observed, 22.3 % during daytime and 6.1 % during nighttime.


2019 ◽  
Author(s):  
Francisco Navas Guzmán ◽  
Giovanni Martucci ◽  
Martine Collaud Coen ◽  
María José Granados Muñoz ◽  
Maxime Hervo ◽  
...  

Abstract. This study focuses on the analysis of aerosol hygroscopicity using remote sensing technique. Continuous observations of aerosol backscatter coefficient, temperature and water vapour mixing ratio are performed by means of a Raman lidar system at the aerological station of MeteoSwiss at Payerne (Switzerland) since 2008. These measurements allow us to monitor in a continuous way any change of aerosol properties as a function of the relative humidity (RH). These changes can be observed either in time at constant altitude or in altitude at a constant time. The accuracy and precision of RH measurements from the lidar have been evaluated using the radiosonde (RS) technique as reference. A total of 172 RSs were used in this intercomparison which revealed a small bias (


2014 ◽  
Vol 7 (3) ◽  
pp. 2491-2543 ◽  
Author(s):  
M. Wiegner ◽  
F. Madonna ◽  
I. Binietoglou ◽  
R. Forkel ◽  
J. Gasteiger ◽  
...  

Abstract. With the establishment of ceilometer networks by national weather services a discussion commenced to which extent these simple backscatter lidars can be used for aerosol research. Though primarily designed for the detection of clouds it was shown that at least observations of the vertical structure of the boundary layer might be possible. However, an assessment of the potential of ceilometers for the quantitative retrieval of aerosol properties is still missing. In this paper we discuss different retrieval methods to derive the aerosol backscatter coefficient βp with special focus on the calibration of the ceilometers. Different options based on forward and backward integration methods are compared with respect to their accuracy and applicability. It is shown, that advanced lidar systems as being operated in the framework of EARLINET are excellent tools for the calibration, so that aerosol retrievals based on forward integration can readily be implemented. Furthermore, we discuss uncertainties introduced by incomplete overlap, the unknown lidar ratio, and water vapor absorption. The latter is relevant for the very large number of ceilometers operating in the spectral range around λ = 905 nm. Nevertheless, the retrieval of βp with an relative error in the order of 10% seems feasible, so ceilometer networks can provide useful information to fill the spatial gaps between sophisticated lidar systems. As a consequence several international projects are underway to harmonize data sets from different ceilometer and lidar networks for the sake of providing near real time information for weather prediction and air quality issues.


2020 ◽  
Author(s):  
Simone Brunamonti ◽  
Giovanni Martucci ◽  
Gonzague Romanens ◽  
Yann Poltera ◽  
Frank G. Wienhold ◽  
...  

Abstract. Remote sensing measurements by light detection and ranging (lidar) instruments are fundamental for the monitoring of altitude-resolved aerosol optical properties. Here, we validate vertical profiles of aerosol backscatter coefficient (βaer) measured by two independent lidar systems using co-located balloon-borne measurements performed by Compact Optical Backscatter Aerosol Detector (COBALD) sondes. COBALD provides high-precision in-situ measurements of βaer at two wavelengths (455 and 940 nm). The two analyzed lidar systems are the research Raman Lidar for Meteorological Observations (RALMO) and the commercial CHM15K ceilometer (Lufft, Germany). We consider in total 17 RALMO and 31 CHM15K profiles, co-located with simultaneous COBALD soundings performed throughout the years 2014–2019 at the MeteoSwiss observatory of Payerne (Switzerland). The RALMO (355 nm) and CHM15K (1064 nm) measurements are converted to respectively 455 nm and 940 nm using the Angstrom exponent profiles retrieved from COBALD data. To account for the different receiver field of view (FOV) angles between the two lidars (0.01–0.02°) and COBALD (6°), we derive a custom-made correction using Mie-theory scattering simulations. Our analysis shows that both RALMO and CHM15K achieve a good agreement with COBALD measurements in the boundary layer and free troposphere, up to 6 km altitude, and including fine structures in the aerosol’s vertical distribution. For altitudes below 2 km, the mean ± standard deviation difference in βaer is + 6 % ± 40 % (+ 0.005 ± 0.319 Mm−1 sr−1) for RALMO – COBALD at 455 nm, and + 13 % ± 51 % (+ 0.038 ± 0.207 Mm−1 sr−1) for CHM15K – COBALD at 940 nm. The large standard deviations can be at least partly attributed to atmospheric variability effects, associated with the balloon’s horizontal drift with altitude (away from the lidar beam) and the different integration times of the two techniques. Combined with the high spatial and temporal variability of atmospheric aerosols, these effects often lead to a slight altitude displacement between aerosol backscatter features that are seen by both techniques. For altitudes between 2–6 km, the absolute standard deviations of both RALMO and CHM15K decrease (below 0.13 and 0.16 Mm−1sr−1, respectively), while their corresponding relative deviations increase (often exceeding 100 % COBALD of the signal). This is due to the low aerosol content (i.e. low absolute backscattered signal) in the free troposphere, and the vertically decreasing signal-to-noise ratio of the lidar measurements (especially CHM15K). Overall, we conclude that the βaer profiles measured by the RALMO and CHM15K lidar systems are in good agreement with in-situ measurements by COBALD sondes up to 6 km altitude.


2020 ◽  
Vol 237 ◽  
pp. 03020
Author(s):  
Adrian Diaz Fortich ◽  
Victor Dominguez ◽  
Yonghua Wu ◽  
Barry Gross ◽  
Fred Moshary

In order to better understand the behavior of particulate pollution and atmospheric dynamics in New York City, it is of great importance to analyze the spatial distribution of aerosols. A scanning lidar system allows for horizontal range-resolved observations of aerosol backscatter with high space and time resolution. A challenge to analyzing the lidar returns is to disentangle extinction over the range of the observations to retrieve the backscatter coefficient with distance. This work presents horizontal measurements taken with a scanning eye-safe Micro Pulse Lidar in New York City. The measurements are analyzed using the Slope Method to get an estimate of the range-resolved aerosol backscatter coefficient. The results are presented as backscatter coefficient maps that display the aerosol spatial distribution within the field of view of the scanning pattern deployed. These observations clearly resolve aerosol dynamics and emission sources within the urban areas.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5442
Author(s):  
Christina-Anna Papanikolaou ◽  
Elina Giannakaki ◽  
Alexandros Papayannis ◽  
Maria Mylonaki ◽  
Ourania Soupiona

The aim of this paper is to study the spatio-temporal evolution of a long-lasting Canadian biomass burning event that affected Europe in August 2018. The event produced biomass burning aerosol layers which were observed during their transport from Canada to Europe from the 16 to the 26 August 2018 using active remote sensing data from the space-borne system Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). The total number of aerosol layers detected was 745 of which 42% were identified as pure biomass burning. The remaining 58% were attributed to smoke mixed with: polluted dust (34%), clean continental (10%), polluted continental (5%), desert dust (6%) or marine aerosols (3%). In this study, smoke layers, pure and mixed ones, were observed by the CALIPSO satellite from 0.8 and up to 9.6 km height above mean sea level (amsl.). The mean altitude of these layers was found between 2.1 and 5.2 km amsl. The Ångström exponent, relevant to the aerosol backscatter coefficient (532/1064 nm), ranged between 0.9 and 1.5, indicating aerosols of different sizes. The mean linear particle depolarization ratio at 532 nm for pure biomass burning aerosols was found equal to 0.05 ± 0.04, indicating near spherical aerosols. We also observed that, in case of no aerosol mixing, the sphericity of pure smoke aerosols does not change during the air mass transportation (0.05–0.06). On the contrary, when the smoke is mixed with dessert dust the mean linear particle depolarization ratio may reach values up to 0.20 ± 0.04, especially close to the African continent (Region 4).


2009 ◽  
Vol 48 (2) ◽  
pp. 176 ◽  
Author(s):  
Michaël Sicard ◽  
Adolfo Comerón ◽  
Francisco Rocadenbosch ◽  
Alejandro Rodríguez ◽  
Constantino Muñoz

Sign in / Sign up

Export Citation Format

Share Document