scholarly journals Retrieval improvements for the ALADIN Airborne Demonstrator in support of the Aeolus wind product validation

2021 ◽  
Author(s):  
Oliver Lux ◽  
Christian Lemmerz ◽  
Fabian Weiler ◽  
Uwe Marksteiner ◽  
Benjamin Witschas ◽  
...  

Abstract. The realization of the European Space Agency’s Aeolus mission was supported by the long-standing development and field deployment of the ALADIN Airborne Demonstrator (A2D) which, since the launch of the Aeolus satellite in 2018, has been serving as a key instrument for the validation of the Atmospheric LAser Doppler INstrument (ALADIN), the first-ever Doppler wind lidar (DWL) in space. However, the validation capabilities of the A2D are compromised by deficiencies of the dual-channel receiver which, like its spaceborne counterpart, consists of a Rayleigh and a complementary Mie spectrometer for sensing the wind speed from both molecular and particulate backscatter signals, respectively. Whereas the accuracy and precision of the Rayleigh channel is limited by the spectrometer’s high alignment sensitivity, especially in the near field of the instrument, large systematic Mie wind errors are caused by aberrations of the interferometer in combination with the temporal overlap of adjacent range gates during signal readout. The two error sources are mitigated by modifications of the A2D wind retrieval algorithm. A novel quality control scheme was implemented which ensures that only backscatter return signals within a small angular range are further processed. Moreover, Mie wind results with large bias of opposing sign in adjacent range bins are vertically averaged. The resulting improvement of the A2D performance was evaluated in the context of two Aeolus airborne validation campaigns that were conducted between May and September 2019. Comparison of the A2D wind data against a high-accuracy, coherent Doppler wind lidar that was deployed in parallel on-board the same aircraft shows that the retrieval refinements considerably decrease the random errors of the A2D line-of-sight (LOS) Rayleigh and Mie winds from about 2.0 m∙s−1 to about 1.5 m∙s−1, demonstrating the capability of such a direct detection DWL. Moreover, the measurement range of the Rayleigh channel could be largely extended by up to 2 km in the instrument’s near field close to the aircraft. The Rayleigh and Mie systematic errors are below 0.5 m∙s−1 (LOS), hence allowing for an accurate assessment of the Aeolus wind errors during the September campaign. The latter revealed different biases of the L2B Rayleigh-clear and Mie-cloudy horizontal LOS (HLOS) for ascending and descending orbits as well as random errors of about 3 m∙s−1 (HLOS) for the Mie and close to 6 m∙s−1 (HLOS) for the Rayleigh winds, respectively. In addition to the Aeolus error evaluation, the present study discusses the applicability of the developed A2D algorithm modifications to the Aeolus processor, thereby offering prospects for improving the Aeolus wind data quality.

2020 ◽  
Vol 13 (4) ◽  
pp. 2075-2097 ◽  
Author(s):  
Oliver Lux ◽  
Christian Lemmerz ◽  
Fabian Weiler ◽  
Uwe Marksteiner ◽  
Benjamin Witschas ◽  
...  

Abstract. Shortly after the successful launch of the European Space Agency's wind mission Aeolus, co-located airborne wind lidar observations were performed in central Europe; these observations employed a prototype of the satellite instrument – the ALADIN (Atmospheric LAser Doppler INstrument) Airborne Demonstrator (A2D). Like the direct-detection Doppler wind lidar on-board Aeolus, the A2D is composed of a frequency-stabilized ultra-violet (UV) laser, a Cassegrain telescope and a dual-channel receiver to measure line-of-sight (LOS) wind speeds by analysing both Mie and Rayleigh backscatter signals. In the framework of the first airborne validation campaign after the launch and still during the commissioning phase of the mission, four coordinated flights along the satellite swath were conducted in late autumn of 2018, yielding wind data in the troposphere with high coverage of the Rayleigh channel. Owing to the different measurement grids and LOS viewing directions of the satellite and the airborne instrument, intercomparison with the Aeolus wind product requires adequate averaging as well as conversion of the measured A2D LOS wind speeds to the satellite LOS (LOS*). The statistical comparison of the two instruments shows a positive bias (of 2.6 m s−1) of the Aeolus Rayleigh winds (measured along its LOS*) with respect to the A2D Rayleigh winds as well as a standard deviation of 3.6 m s−1. Considering the accuracy and precision of the A2D wind data, which were determined from comparison with a highly accurate coherent wind lidar as well as with the European Centre for Medium-Range Weather Forecasts (ECMWF) model winds, the systematic and random errors of the Aeolus LOS* Rayleigh winds are 1.7 and 2.5 m s−1 respectively. The paper also discusses the influence of different threshold parameters implemented in the comparison algorithm as well as an optimization of the A2D vertical sampling to be used in forthcoming validation campaigns.


2020 ◽  
Author(s):  
Oliver Lux ◽  
Christian Lemmerz ◽  
Fabian Weiler ◽  
Uwe Marksteiner ◽  
Benjamin Witschas ◽  
...  

Abstract. Shortly after the successful launch of ESA’s wind mission Aeolus, carried out by the European Space Agency, collocated airborne wind lidar observations were performed in Central Europe, employing the prototype of the satellite instrument, the ALADIN Airborne Demonstrator (A2D). Like the direct-detection Doppler wind lidar on-board Aeolus, the A2D is composed of a frequency-stabilised ultra-violet laser, a Cassegrain telescope and a dual-channel receiver to measure line-of-sight (LOS) wind speeds by analysing both Mie and Rayleigh backscatter signals. In the frame of the first airborne validation campaign after the launch still during the commissioning phase of the mission, four coordinated flights along the satellite swath were conducted in late autumn of 2018, yielding wind data in the troposphere with high coverage of the Rayleigh channel. Owing to the different measurement grids and viewing directions of the satellite and airborne instrument, intercomparison with the Aeolus wind product requires adequate averaging as well as conversion of the measured A2D LOS wind speeds to the satellite LOS. The statistical comparison of the two instruments with model wind data from the ECMWF shows biases of the A2D and Aeolus LOS wind speeds of −0.9 m s−1 and +1.6 m s−1, respectively, while the random errors are around 2.5 m s−1. The paper also discusses the influence of different threshold parameters implemented in the comparison algorithm as well as optimization of the A2D vertical sampling to be used in forthcoming validation campaigns.


2016 ◽  
Vol 45 (9) ◽  
pp. 0906004
Author(s):  
王国成 Wang Guocheng ◽  
张飞飞 Zhang Feifei ◽  
钱正祥 Qian Zhengxiang ◽  
杜 跃 Du Yue ◽  
舒志峰 Shu Zhifeng ◽  
...  

2020 ◽  
Vol 237 ◽  
pp. 01008 ◽  
Author(s):  
Holger Baars ◽  
Alexander Geiß ◽  
Ulla Wandinger ◽  
Alina Herzog ◽  
Ronny Engelmann ◽  
...  

On 22nd August 2018, the European Space Agency (ESA) launched the first direct detection Doppler wind lidar into space. Operating at 355 nm and acquiring signals with a dual channel receiver, it allows wind observations in clear air and particle-laden regions of the atmosphere. Furthermore, particle optical properties can be obtained using the High Spectral Resolution Technique Lidar (HSRL) technique. Measuring with 87 km horizontal and 0.25-2 km vertical resolution between ground and up to 30 km in the stratosphere, the global coverage of Aeolus observations shall fill gaps in the global observing system and thus help improving numerical weather prediction. Within this contribution, first results from the German initiative for experimental Aeolus validation are presented and discussed. Ground-based wind and aerosol measurements from tropospheric radar wind profilers, Doppler wind lidars, radiosondes, aerosol lidars and cloud radars are utilized for that purpose.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1141
Author(s):  
Steven Greco ◽  
George D. Emmitt ◽  
Alice DuVivier ◽  
Keith Hines ◽  
Michael Kavaya

During October–November 2014 and May 2015, NASA sponsored and conducted a pair of airborne campaigns called Polar Winds to investigate atmospheric circulations, particularly in the boundary layer, over the Arctic using NASA’s Doppler Aerosol WiNd (DAWN) lidar. A description of the campaigns, the DAWN instrument, wind retrieval methods and data processing is provided. During the campaigns, the DAWN instrument faced backscatter sensitivity issues in the low aerosol conditions that were fairly frequent in the 2–6 km altitude range. However, when DAWN was able to make measurements, comparisons with dropsondes show good agreement and very low bias and supports the use of an airborne Doppler wind lidar such as DAWN that can provide profiles with high velocity precision, ~65 m vertical resolution and horizontal spacing as fine as 3–7 km. Case study analyses of a Greenland tip jet, barrier winds and an upper level jet are presented and show how, despite sensitivity issues, DAWN data can be confidently used in diagnostic studies of dynamic features in the Arctic. Comparisons with both an operational and research Weather Research and Forecasting (WRF) model for these events also show the potential for utilization in model validation. The sensitivity issues of the DAWN laser have since been corrected.


Author(s):  
Yuan Yao ◽  
Xin Gao ◽  
Ziru Sang ◽  
Kun Hu ◽  
Futian Liang ◽  
...  

2013 ◽  
Author(s):  
Xin Gao ◽  
Fei Wen ◽  
Yuan Yao ◽  
Zi-ru Sang ◽  
Ge Jin

Sign in / Sign up

Export Citation Format

Share Document