upper level jet
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 25)

H-INDEX

17
(FIVE YEARS 2)

Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 17
Author(s):  
Shuqin Zhang ◽  
Gang Fu ◽  
Yu Zhang ◽  
Jianjun Xu ◽  
Yufeng Xue ◽  
...  

Statistical characteristics and composite synoptic-scale environmental conditions of explosive cyclones (ECs) over the Japan Sea and Kuroshio/Kuroshio Extension are examined and compared using ERA5 atmospheric reanalysis to give a better understanding of their differences. ECs over the Japan Sea frequently occur in late autumn and early winter and those over the Kuroshio/Kuroshio Extension mainly occur in winter and early spring. The maximum deepening rate, minimum central sea level pressure and explosive-developing lifetime of ECs over the Kuroshio/Kuroshio Extension are generally larger, lower and longer, respectively, than those over the Japan Sea. ECs over the Kuroshio/Kuroshio Extension formed over the East China Sea tend to develop more rapidly, and weak and moderate ECs generally begin to develop explosively over the sea to the east of the Japan Islands, while the strong and super ECs over the sea to the south of Japan Islands have longer explosive-developing tracks. Composite analysis shows that synoptic-scale environmental conditions favoring rapid EC development over these two regions are significantly different. ECs over the Japan Sea have stronger baroclinicity and cyclonic vorticity, but weaker water vapor convergence and upper-level jet stream than those over the Kuroshio/Kuroshio Extension. The key factor contributing to the baroclinicity is the cold air intrusion over the Japan Sea and the strong warm current heating over the Kuroshio/Kuroshio Extension. The potential vorticity shows anomalies in upper and low levels for both EC areas and extends further downwards over the Japan Sea.


2021 ◽  
Vol 21 (22) ◽  
pp. 16689-16707
Author(s):  
Ju-Mee Ryoo ◽  
Leonhard Pfister ◽  
Rei Ueyama ◽  
Paquita Zuidema ◽  
Robert Wood ◽  
...  

Abstract. In 2016–2018, the ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) project undertook 3-month-long deployments to the southeastern (SE) Atlantic Ocean using research aircraft to better understand the impact of biomass burning (BB) aerosol transport to the SE Atlantic Ocean on climate. In this (part 1 of the meteorological overview) paper, the climatological features at monthly timescales are investigated. The southern African easterly jet (AEJ-S), defined as the zonal easterlies over 600–700 hPa exceeding 6 m s−1 around 5–15∘ S, is a characteristic feature of the mid-level circulation over southern Africa that was also during the deployment months of August 2017, September 2016, and October 2018. Climatologically, the AEJ-S develops at lower altitudes (∼ 3 km; 700 hPa) between 5–10∘ S in August, while it develops at around 4 km (∼ 600 hPa) and further south (5–15∘ S) in September and October, largely driven by the strong sensible heating over the African plateau. Notable meteorological anomalous characteristics during the 3 deployment months, compared to climatology (2000–2018), include the following: (1) during August 2017, the AEJ-S was weaker than the climatological mean, with an additional anomalous upper-level jet aloft (∼ 6 km) around 10∘ S. August 2017 was also drier over the SE Atlantic at 600–700 hPa than climatology, with a stronger Benguela low-level jet (LLJ) at 925–950 hPa along the Namibian coast of the SE Atlantic. Consistent with this, the southern Atlantic anticyclone was also stronger and closer to the coast than the August climatological mean. (2) During September 2016, the AEJ-S intensity was similar to the climatological mean, although the heat low and vertical motion over the land was slightly stronger compared to the September climatology. The LLJ and the large-scale southern Atlantic anticyclone were stronger than the climatological mean. (3) During October 2018, the AEJ-S was slightly weaker compared to the climatological mean, as was the LLJ and the southern Atlantic anticyclone. October 2018 was wetter over the Benguela coastal region at 600 hPa than the climatological mean. During all the deployment months, the sea surface temperatures (SST) over the SE Atlantic were warmer than the climatological means, but the monthly mean low cloud fraction was only noticeably reduced in August 2017. A weak August 2017 AEJ-S can explain low offshore black carbon (BC) mixing ratios within the European Centre for Medium-Range Weather Forecasts (ECMWF) Copernicus Atmosphere Monitoring Service (CAMS) reanalysis, although the BC peak altitude, at 2–3 km, is below that of the AEJ-S. The upper-level wave disturbance and the associated anomalous circulation also explain the weakening of AEJ-S through the reduction of the strength of the heat low over the land during August 2017.


Author(s):  
Manda B. Chasteen ◽  
Steven E. Koch

AbstractOne of the most prolific tornado outbreaks ever documented occurred on 26–27 April 2011 and comprised three successive episodes of tornadic convection that culminated with the development of numerous long-track, violent tornadoes over the southeastern U.S. during the afternoon of 27 April. This notorious afternoon supercell outbreak was preceded by two quasi-linear convective systems (hereafter QLCS1 and QLCS2), the first of which was an anomalously severe nocturnal system that rapidly grew upscale during the previous evening. In this Part II, we use a series of RUC 1-h forecasts and output from convection-permitting WRF-ARW simulations configured both with and without latent heat release to investigate how environmental modifications and upscale feedbacks produced by the two QLCSs contributed to the evolution and exceptional severity of this multi-episode outbreak.QLCS1 was primarily responsible for amplifying the large-scale flow pattern, inducing two upper-level jet streaks, and promoting secondary surface cyclogenesis downstream from the primary baroclinic system. Upper-level divergence markedly increased after QLCS1 developed, which yielded strong isallobaric forcing that rapidly strengthened the low-level jet (LLJ) and vertical wind shear over the warm sector and contributed to the system’s upscale growth and notable severity. Moreover, QLCS2 modified the mesoscale environment prior to the supercell outbreak by promoting the downstream formation of a pronounced upper-level jet streak, altering the midlevel jet structure, and furthering the development of a highly ageostrophic LLJ over the Southeast. Collectively, the flow modifications produced by both QLCSs contributed to the notably favorable shear profiles present during the afternoon supercell outbreak.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1061
Author(s):  
Gunwoo Do ◽  
Hyeong-Seog Kim

The effect of the jet stream on the changes in the intensity of tropical cyclones (TC) affecting Korea is discussed. We classified the TCs into three categories based on the decreasing rate of TC intensity in 24 h after TC passed 30° N. The TCs with a large intensity decrease had a more vigorous intensity when the TCs approached the mid-latitudes. The analysis of observational fields showed that the strong jet stream over Korea and Japan may intensify TCs by the secondary circulations of jet entrance but induces a large decrease in TC intensity in the mid-latitudes by the strong vertical wind shear. We also performed the numerical simulation for the effect of the jet stream on the intensity changes of Typhoon Chaba (2016). As a result, the stronger jet stream induced more low-level moisture convergence at the south of the jet stream entrance, enhancing the intensity when the TC approached Korea. Furthermore, it induced a rapid reduction in intensity when TC approached in the strong jet stream area. The results suggest that the upper-level jet stream is one of the critical factors modulating the intensity of TC affecting Korea in the vicinity of the mid-latitudes.


2021 ◽  
Author(s):  
Woosuk Choi ◽  
Chang-Hoi Ho ◽  
Jiyoung Jung ◽  
Minhee Chang ◽  
Kyung-Ja Ha

AbstractAs global warming gets worse, the extreme heat exposure time is expected to increase. Considering that the heatwave damages increased by the accumulation of heat stress, it is important to understand the heatwave onset and number of heatwave days (HWDs). Here, we show that the end of East Asian summer monsoon activity (i.e., Changma retreat date, CRD) could be an indicator in determining the onset of the heatwave, and the barotropic structure induced by the circumglobal and Pacific–Japan teleconnections is a key factor in lengthening the number of HWDs in Korea. The onset of the heatwave is delayed when CRD belated than the climatology late over Korea due to sufficient moisture transportation between the edge of western North Pacific subtropical high and cold polar air mass in July. The number of HWDs from July through August over Korea shows a positive linear relationship with the synoptic stagnation index because the upper-layer anticyclone associated with stagnation is formed around Korea by zonal wave activity. Barotropic anticyclone stabilizes the atmosphere and increases the number of clear sky days, which possibly leads to hot days. Fewer HWDs are observed when there is baroclinic instability due to strong upper-level jet stream and synoptic-scale weather systems move smoothly. By identifying the meteorological mechanism of heatwave occurrence and favorable conditions for sustained hot days over Korea, our results are eventually able to contribute to reducing damages caused by heatwaves.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 886
Author(s):  
Wen Wei ◽  
Bingliang Zhuang ◽  
Huijuan Lin ◽  
Yu Shu ◽  
Tijian Wang ◽  
...  

The rapid economic development in East Asia has led to serious air pollution problems in the near-surface layer. Studies have shown that there is an interaction between air pollution and the East Asian upper-level jet, which is an important weather system controlling the climate in East Asia. Therefore, it is of great significance to study the relationship between the surface layer air pollutants and the upper-level jet stream in East Asia. Based on the daily wind and vertical velocity data provided by the National Centers for Environmental Prediction/National Center for Atmospheric Research as well as the surface pollutant and meteorological variable data provided by the Science Data Bank, we use statistical analysis methods to study the relationship between the East Asian upper-level jet and the high-concentration area of near-surface air pollutants in summer. Meanwhile, the mechanisms of the interaction are preliminarily discussed. The results show that the North China Plain and the Tarim Basin are the high-value areas of the particulate matter (PM) in summer during 2013–2018, and the ozone (O3) concentration in the near-surface atmospheric layer in the North China Plain is also high. The average concentrations of the PM2.5, PM10 and O3 in the North China Plain are 45.09, 70.28 and 131.27 μg·m−3, respectively, and the days with the concentration exceeding the standard reach 401, 461 and 488, respectively. During this period, there is an increasing trend in the O3 concentration and a decreasing trend in the PM concentration. The average ratio of the PM2.5 to PM10 is approximately 0.65 with a decreasing trend. The air pollutant concentration in this region has a significant relationship with the location of the East Asian upper-level jet. The low wind speed at the surface level under the control of the upper-level jet is the main reason for the high pollutant concentration besides the pollutant emission. They relate to each other through the surface humidity and the meridional and zonal wind. Meanwhile, the concentrations of the PM2.5 and PM10 are high in the near-surface layer in the Tarim Basin, and the average concentrations are 45.19 and 49.08 μg·m−3, respectively. The days with the concentration exceeding the standard are 265 and 193, respectively. The interannual variation in the PM concentration shows an increasing trend first and then a decreasing trend. The average ratio of PM2.5 to PM10 in this region reaches approximately 0.9. The ratio reaches the highest in 2013 and 2014 and then decreases to and maintains at approximately 0.85. The concentration of air pollutants in the basin has a significant relationship with the intensity of the upper-level jet in East Asia. The weakening of the upper-level jet will lead to a decrease in the surface humidity in the northern part of the basin, an increase in the surface temperature in the western part of the basin and a decrease in the surface zonal wind in the eastern part of the basin, which will result in a higher PM concentration.


2021 ◽  
Author(s):  
Woosuk Choi ◽  
Chang-Hoi Ho ◽  
Jiyoung Jung ◽  
Minhee Chang ◽  
Kyung-Ja Ha

Abstract As global warming gets worse, the extreme heat exposure time is expected to increase. Considering that the heatwave damages increased by the accumulation of heat stress, it is important to understand the heatwave onset and number of heatwave days (HWDs). Here, we show that the end of East Asian summer monsoon activity (i.e., Changma retreat date, CRD) could be an indicator in determining the onset of the heatwave, and the barotropic structure induced by the circumglobal and Pacific–Japan teleconnections is a key factor in lengthening the number of HWDs in Korea. The onset of the heatwave is delayed when CRD belated than the climatology late over Korea due to sufficient moisture transportation between the edge of western North Pacific subtropical high and cold polar air mass in July. The number of HWDs from July through August over Korea shows a positive linear relationship with the synoptic stagnation index because the upper-layer anticyclone associated with stagnation is formed around Korea by zonal wave activity. Barotropic anticyclone stabilizes the atmosphere and increases the number of clear sky days, which possibly leads to hot days. Fewer HWDs are observed when there is baroclinic instability due to strong upper-level jet stream and synoptic-scale weather systems move smoothly. By identifying the meteorological mechanism of heatwave occurrence and favorable conditions for sustained hot days over Korea, our results are eventually able to contribute to reducing damages caused by heatwaves.


Author(s):  
Chanil Park ◽  
Seok-Woo Son ◽  
Jung-Hoon Kim

AbstractThe nature of the vertical motion responsible for the summertime (June–September) heavy rainfall events (HREs) in Korea is quantitatively examined. By compositing 318 HREs in 1979–2018, it is found that the synoptic conditions of the HREs are typically characterized by a developing surface cyclone with a southwesterly low-level jet on its southeastern flank and an upper-level trough to the west of the HREs. This baroclinic environment allows for well-organized vertical motion over Korea at the equatorward side of the upper-level jet entrance. The relative importance of dynamic and diabatic forcings in driving the vertical motion is further quantified by solving the quasi-geostrophic omega equation. It turns out that the dynamic forcing, defined as Q-vector convergence, is comparable to the diabatic forcing in the developing stage of the HREs. The diabatic forcing, however, becomes more important in the mature stage as latent heating rapidly increases. The decomposition of Q-vector into the transverse and shearwise components reveals that the dynamic uplift is largely caused by the shearwise Q-vector convergence which is closely related to the developing trough in the upper-to-middle troposphere on the west of the HREs. This result indicates that the HREs in Korea are organized by the baroclinic trough coupled to moist processes, with a minor contribution of the thermally-direct secondary circulation at the entrance region of the upper-level jet.


2021 ◽  
Author(s):  
Carolina Gramcianinov ◽  
Ricardo de Camargo ◽  
Pedro Silva Dias

<p>This work aims to assess the future projected changes in the cyclones originated in the South Atlantic, focusing on their genesis and intensifying mechanisms. The TRACK program was used to identify and track cyclones based on the relative vorticity from winds at 850 hPa. Spatial distribution maps of the atmospheric environment at the time of genesis were built using information sampled from individual features, e.g., mean upper-level jet speed, low-level moisture transport. First, we evaluated the HadGEM2-ES ability to reproduce the main characteristics of the South Atlantic cyclones and access their future projected changes using the RCP8.5 scenario. Then, we performed a dynamical downscaling using the WRF model to improve the resolution of the climate model in the historical (ExpHad-HIST) and RCP8.5 (ExpHad-RCP85) scenarios. Our results showed that HadGEM2-ES were able to reproduce the South Atlantic storm track pattern and its four main cyclogenesis regions: (1) Southern Brazilian coast (SE-BR, 30ºS); (2) Northern Argentina, Uruguay, and Southern Brazil (LA PLATA, 35ºS); (3) central coast of Argentina (ARG, 40ºS-55º) and; (4) Southeastern South Atlantic (SE-SAO, 55ºS and 10ºW). However, HadGEM-ES presented less intense cyclones and a negative density bias on the subtropical storm track, as a consequence of an underestimated genesis in the LA PLATA and SE-BR regions. The ExpHad-HIST provided a better representation of these two genesis regions, where the effects of an improved orography, mesoscale processes and strong and more organized low-level jet seem to reduce the static stability and support cyclone development. HadGEM2-ES RCP8.5 future projection showed a decrease of 10% in the number of cyclones over South Atlantic and a poleward shift of the main storm track, linked to the larger reduction of systems in mid than high latitudes. This increase in the cyclone activity at 30ºS led to the high track density in the South Atlantic subtropical storm track, both in the summer and winter. The ExpHad-RCP85 also showed a poleward shift of the main storm track, but mainly in the summer. The reduction and southward displacement of the cyclone occurrences can be addressed to the increase in the static stability at mid-latitudes. However, the increase in the moisture content at low levels seems to balance the effect of the static stability as long as there is an increase in the genesis in the equatorward genesis regions. In fact, the ExpHad-RCP85 simulated growth in the genesis in the northern edge of SE-BR (20ºS, 50ºW) and ARG (45ºS) regions, in the summer, and the LA PLATA region in the winter - being the last change also observed in HadGEM2-ES RCP8.5. The large increase in the low-level moisture and a strengthening of the equatorward flank of the upper-level jet could justify more genesis at these locations, competing with the increase in static stability. Moreover, the large content of low-level moisture available in the future simulation may also be connected to the observed intensification of the cyclones over the Uruguayan and Brazilian coast.</p>


Sign in / Sign up

Export Citation Format

Share Document