scholarly journals The MIPAS2D database of MIPAS/ENVISAT measurements retrieved with a multi-target 2-dimensional tomographic approach

2010 ◽  
Vol 3 (2) ◽  
pp. 355-374 ◽  
Author(s):  
B. M. Dinelli ◽  
E. Arnone ◽  
G. Brizzi ◽  
M. Carlotti ◽  
E. Castelli ◽  
...  

Abstract. We present a multi-year database of atmospheric fields of the upper troposphere, stratosphere and lower mesosphere retrieved from satellite measurements adopting a 2-dimensional tomographic approach. The full mission of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument, on board the European Space Agency ENVISAT satellite, is analyzed with the Geofit Multi-Target Retrieval (GMTR) system to obtain the MIPAS2D database with atmospheric fields of pressure, temperature and volume mixing ratio of MIPAS main targets H2O, O3, HNO3, CH4, N2O, and NO2. The database covers both the MIPAS nominal observation mode measured at Full Resolution (FR) from July 2002 to March 2004 and the nominal observation mode of the new configuration, measured at Optimized Resolution (OR) and introduced in 2005. Further to the main targets, minor species N2O5, ClONO2, COF2, CFC-11, and CFC-12 for the FR mission only have been included in MIPAS2D to enhance its applicability in studies of stratospheric chemistry. The database is continuously updated with the analysis of the ongoing measurements that are planned to last until the end of 2013 and extended to other targets. The GMTR algorithm is operated on a fixed vertical grid coincident with the tangent altitudes of the FR nominal mode, spanning the altitude range from 6 to 68 km. In the horizontal domain, FR measurements are retrieved on both the observational grid and an equispaced 5 latitudinal-degrees grid which is made possible by the 2-dimensional retrieval algorithm. The analysis of MIPAS OR observations is operated on the same altitude-latitude fixed retrieval grid used for the FR measurements. This choice provides a database with a homogeneous altitude and latitude grid, over the whole globe, covering to date about seven years of measurements. The equispaced latitude grid provides a new and convenient layout for the much needed synergetic studies of data from various instrumental and modeling sources. MIPAS2D is available to the scientific community through the two web sites http://www.mbf.fci.unibo.it/mipas2d.html, and http://www.isac.cnr.it/~rss/mipas2d.htm

2009 ◽  
Vol 2 (5) ◽  
pp. 2639-2688 ◽  
Author(s):  
B. M. Dinelli ◽  
E. Arnone ◽  
G. Brizzi ◽  
M. Carlotti ◽  
E. Castelli ◽  
...  

Abstract. We present a multi-year database of atmospheric state parameters retrieved for the upper tropospheric to mesospheric region from satellite measurements with a 2-dimensional tomographic approach. The full mission of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument, on board the European Space Agency ENVISAT satellite, is analyzed with the Geofit Multi-Target Retrieval (GMTR) system to obtain the MIPAS2D database with atmospheric fields of pressure, temperature and volume mixing ratio of MIPAS main targets H2O, O3, HNO3, CH4, N2O, and NO2. The database covers both the MIPAS nominal observation mode measured at Full Resolution (FR) from July 2002 to March 2004 and the nominal observation mode of the new configuration, measured at Optimized Resolution (OR) and introduced in 2005. Further to the main targets, minor species N2O5, ClONO2, COF2, CFC-11, and CFC-12 for the FR mission only have been included in MIPAS2D to enhance its applicability in studies of stratospheric chemistry. The database is continuously updated with the analysis of the ongoing measurements that are planned to last until the end of 2013. The GMTR algorithm is operated on a fixed vertical grid coincident with the tangent altitudes of the FR nominal mode, spanning the altitude range from 6 to 68 km. In the horizontal domain, FR measurements are retrieved on both the observational grid and an equispaced 5 latitudinal-degrees grid which is made possible by the 2-dimensional retrieval algorithm. The analysis of MIPAS OR observations is operated on the same altitude-latitude fixed retrieval grid used for the FR measurements. This choice provides a homogeneous database in altitude and latitude, over the whole globe, covering to date about seven years of measurements. The equispaced latitudinal grid provides a new and convenient layout for the much needed synergetic studies of data from various instrumental and modeling sources. MIPAS2D is available to the scientific community through the two web sites http://www.mbf.fci.unibo.it/mipas2d.html, and http://www.isac.cnr.it/~rss/mipas2d.htm.


2007 ◽  
Vol 7 (2) ◽  
pp. 5439-5513 ◽  
Author(s):  
M. Ridolfi ◽  
U. Blum ◽  
B. Carli ◽  
V. Catoire ◽  
S. Ceccherini ◽  
...  

Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) has been operating since March 2002 onboard of the ENVIronmental SATellite of the European Space Agency (ESA). The high resolution (0.035 cm−1) limb-emission measurements acquired by MIPAS in the first two years of operation have very good geographical and temporal coverage and have been re-processed by ESA with the most recent versions (4.61 and 4.62) of the inversion algorithms. The products of this processing chain are geolocated profiles of temperature and of the volume mixing ratios of six key atmospheric constituents: H2O, O3, HNO3, CH4, N2O and NO2. As for all the measurements made with innovative instruments and techniques, this data set requires a thorough validation. In this paper we present a geophysical validation of the temperature profiles derived from MIPAS measurements by the ESA retrieval algorithm. The validation is carried-out by comparing MIPAS temperature with correlative measurements made by radiosondes, lidars, in-situ and remote sensors operated either from the ground or stratospheric balloons. The results of the intercomparison indicate that the bias of the MIPAS profiles is generally smaller than 1 or 2 K depending on altitude. Furthermore we find that, especially at the edges of the altitude range covered by the MIPAS scan, the random error estimated from the intercomparison is larger (typically by a factor of two to three) than the corresponding estimate derived on the basis of error propagation. In this work we also characterize the discrepancies between MIPAS temperature and the temperature fields resulting from the analyses of the European Centre for Medium-range Weather Forecasts (ECMWF). The bias and the standard deviation of these discrepancies are consistent with those obtained when comparing MIPAS to correlative measurements; however, in this case the detected bias has a peculiar behavior as a function of altitude. This behavior is very similar to that observed in previous studies and is suspected to be due to a problem in the ECMWF temperature.


2007 ◽  
Vol 7 (16) ◽  
pp. 4459-4487 ◽  
Author(s):  
M. Ridolfi ◽  
U. Blum ◽  
B. Carli ◽  
V. Catoire ◽  
S. Ceccherini ◽  
...  

Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) has been operating since March 2002 onboard of the ENVIronmental SATellite of the European Space Agency (ESA). The high resolution (0.035 cm−1 full width half maximum, unapodized) limb-emission measurements acquired by MIPAS in the first two years of operation have very good geographical and temporal coverage and have been re-processed by ESA with the most recent versions (4.61 and 4.62) of the inversion algorithms. The products of this processing chain are pressures at the tangent points and geolocated profiles of temperature and of the volume mixing ratios of six key atmospheric constituents: H2O, O3, HNO3, CH4, N2O and NO2. As for all the measurements made with innovative instruments and techniques, this data set requires a thorough validation. In this paper we present a geophysical validation of the temperature profiles derived from MIPAS measurements by the ESA retrieval algorithm. The validation is carried-out by comparing MIPAS temperature with correlative measurements made by radiosondes, lidars, in-situ and remote sensors operated either from the ground or stratospheric balloons. The results of the intercomparison indicate that the bias of the MIPAS profiles is generally smaller than 1 or 2 K depending on altitude. Furthermore we find that, especially at the edges of the altitude range covered by the MIPAS scan, the random error estimated from the intercomparison is larger (typically by a factor of two to three) than the corresponding estimate derived on the basis of error propagation. In this work we also characterize the discrepancies between MIPAS temperature and the temperature fields resulting from the analyses of the European Centre for Medium-range Weather Forecasts (ECMWF). The bias and the standard deviation of these discrepancies are consistent with those obtained when comparing MIPAS to correlative measurements; however, in this case the detected bias has a peculiar behavior as a function of altitude. This behavior is very similar to that observed in previous studies and is suspected to be due to vertical oscillations in the ECMWF temperature. The current understanding is that, at least in the upper stratosphere (above ≈10 hPa), these oscillations are caused by a discrepancy between model biases and biases of assimilated radiances from primarily nadir sounders.


2015 ◽  
Vol 8 (12) ◽  
pp. 5251-5261 ◽  
Author(s):  
A. Laeng ◽  
J. Plieninger ◽  
T. von Clarmann ◽  
U. Grabowski ◽  
G. Stiller ◽  
...  

Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is an infrared (IR) limb emission spectrometer on the Envisat platform. It measures trace gas distributions during day and night, pole-to-pole, over an altitude range from 6 to 70 km in nominal mode and up to 170 km in special modes, depending on the measurement mode, producing more than 1000 profiles day−1. We present the results of a validation study of methane, version V5R_CH4_222, retrieved with the IMK/IAA (Institut für Meteorologie und Klimaforschung, Karlsruhe/Instituto de Astrofisica de Andalucia, Grenada) MIPAS scientific level 2 processor. The level 1 spectra are provided by the ESA (European Space Agency) and version 5 was used. The time period covered is 2005–2012, which corresponds to the period when MIPAS measured trace gas distributions at a reduced spectral resolution of 0.0625 cm−1. The comparison with satellite instruments includes the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), the HALogen Occultation Experiment (HALOE), the Solar Occultation For Ice Experiment (SOFIE) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). Furthermore, comparisons with MkIV balloon-borne solar occultation measurements and with air sampling measurements performed by the University of Frankfurt are presented. The validation activities include bias determination, assessment of stability, precision validation, analysis of histograms and comparison of corresponding climatologies. Above 50 km altitude, MIPAS methane mixing ratios agree within 3 % with ACE-FTS and SOFIE. Between 30 and 40 km an agreement within 3 % with SCIAMACHY has been found. In the middle stratosphere, there is no clear indication of a MIPAS bias since comparisons with various instruments contradict each other. In the lower stratosphere (below 25 km) MIPAS CH4 is biased high with respect to satellite instruments, and the most likely estimate of this bias is 14 %. However, in the comparison with CH4 data obtained from cryogenic whole-air sampler (cryosampler) measurements, there is no evidence of a high bias in MIPAS between 20 and 25 km altitude. Precision validation is performed on collocated MIPAS–MIPAS pairs and suggests a slight underestimation of its uncertainties by a factor of 1.2. No significant evidence of an instrumental drift has been found.


2013 ◽  
Vol 5 (2) ◽  
pp. 349-363 ◽  
Author(s):  
V. F. Sofieva ◽  
N. Rahpoe ◽  
J. Tamminen ◽  
E. Kyrölä ◽  
N. Kalakoski ◽  
...  

Abstract. In this paper, we present a HARMonized dataset of OZone profiles (HARMOZ) based on limb and occultation measurements from Envisat (GOMOS, MIPAS and SCIAMACHY), Odin (OSIRIS, SMR) and SCISAT (ACE-FTS) satellite instruments. These measurements provide high-vertical-resolution ozone profiles covering the altitude range from the upper troposphere up to the mesosphere in years 2001–2012. HARMOZ has been created in the framework of the European Space Agency Climate Change Initiative project. The harmonized dataset consists of original retrieved ozone profiles from each instrument, which are screened for invalid data by the instrument teams. While the original ozone profiles are presented in different units and on different vertical grids, the harmonized dataset is given on a common pressure grid in netCDF (network common data form)-4 format. The pressure grid corresponds to vertical sampling of ~ 1 km below 20 km and 2–3 km above 20 km. The vertical range of the ozone profiles is specific for each instrument, thus all information contained in the original data is preserved. Provided altitude and temperature profiles allow the representation of ozone profiles in number density or mixing ratio on a pressure or altitude vertical grid. Geolocation, uncertainty estimates and vertical resolution are provided for each profile. For each instrument, optional parameters, which are related to the data quality, are also included. For convenience of users, tables of biases between each pair of instruments for each month, as well as bias uncertainties, are provided. These tables characterize the data consistency and can be used in various bias and drift analyses, which are needed, for instance, for combining several datasets to obtain a long-term climate dataset. This user-friendly dataset can be interesting and useful for various analyses and applications, such as data merging, data validation, assimilation and scientific research. The dataset is available at http://www.esa-ozone-cci.org/?q=node/161 or at doi:10.5270/esa-ozone_cci-limb_occultation_profiles-2001_2012-v_1-201308.


2013 ◽  
Vol 13 (2) ◽  
pp. 4433-4489
Author(s):  
G. Wetzel ◽  
H. Oelhaf ◽  
G. Berthet ◽  
A. Bracher ◽  
C. Cornacchia ◽  
...  

Abstract. Water vapour (H2O) is one of the operationally retrieved key species of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument aboard the environmental satellite ENVISAT which was launched into its sun-synchronous orbit on 1 March 2002 and operated until April 2012. Within the MIPAS validation activities, independent observations from balloons, aircraft, satellites, and ground-based stations have been compared to European Space Agency (ESA) version 4.61 operational H2O data comprising the time period from July 2002 until March 2004 where MIPAS measured with full spectral resolution. No significant bias in the MIPAS H2O data is obvious in the lower stratosphere (above the hygropause) between about 15 and 30 km. Differences of H2O quantities observed by MIPAS and the validation instruments are mostly well within the combined total errors in this altitude region. In the upper stratosphere (above about 30 km), a tendency towards a small positive bias (up to 10%) is present in the MIPAS data when compared to its balloon-borne counterpart MIPAS-B, to the satellite instruments HALOE (Halogen Occultation Experiment) and ACE-FTS (Atmospheric Chemistry Experiment, Fourier Transform Spectrometer), and to the MM-wave airborne sensor AMSOS (Airborne Microwave Stratospheric Observing System). In the mesosphere the situation is unclear due to the occurrence of different biases when comparing HALOE and ACE-FTS data. Pronounced deviations between MIPAS and the correlative instruments occur in the lowermost stratosphere and upper troposphere, a region where retrievals of H2O are most challenging. Altogether it can be concluded that MIPAS H2O profiles yield valuable information on the vertical distribution of H2O in the stratosphere with an overall accuracy of about 10 to 30% and a precision of typically 5 to 15% – well within the predicted error budget, proving that these global and continuous data are very valuable for scientific studies. However, in the region around the tropopause retrieved MIPAS H2O profiles are less reliable, suffering from a number of obstacles such as retrieval boundary and cloud effects, sharp vertical discontinuities, and frequent horizontal gradients in both temperature and H2O volume mixing ratio (VMR). Some profiles are characterized by retrieval instabilities.


2017 ◽  
Author(s):  
Massimo Valeri ◽  
Flavio Barbara ◽  
Chris Boone ◽  
Simone Ceccherini ◽  
Marco Gai ◽  
...  

Abstract. Atmospheric emissions of Carbon tetrachloride CCl4 are regulated by the Montreal Protocol due to its role as a strong ozone-depleting substance. The molecule has been the subject of recent increased interest as a consequence of the so called ``mystery of CCl4,'' the discrepancy between atmospheric observations and reported production and consumption. Surface measurements of CCl4 atmospheric concentrations have declined at a rate almost three times smaller than its lifetime-limited rate, suggesting persistent atmospheric emissions despite the ban. In this paper, we study CCl4 vertical and zonal distributions in the upper troposphere and lower stratosphere (including the photolytic loss region, 70–20 hPa), its trend, and its stratospheric lifetime using measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which operated onboard the ENVISAT satellite from 2002 to 2012. Specifically, we use the MIPAS data product generated with Version 7 of the Level 2 algorithm operated by the European Space Agency. The CCl4 zonal means show features typical of long-lived species of anthropogenic origin that are destroyed primarily in the stratosphere, with larger quantities in the troposphere and a monotonic decrease with increasing altitude in the stratosphere. In the troposphere, the largest concentrations are observed at the latitudes of major industrial countries (20/50°N). The good agreement we find between MIPAS CCl4 and independent measurements from other satellite and balloon-borne remote sounders proves the reliability of the MIPAS dataset. CCl4 trends are calculated as a function of both latitude and altitude. Negative trends are found at all latitudes in the upper-troposphere / lower-stratosphere region, apart from a region in the Southern mid-latitudes between 50 and 10 hPa where the trend is positive. At the lowest altitudes sounded by MIPAS, we find trends consistent with those determined on the basis of long-term ground-based measurements. For higher altitudes, the trend shows a pronounced asymmetry between Northern and Southern Hemispheres, and the magnitude of the decline rate increases with altitude. At 50 hPa the decline is about 30–35 %/decade, close to the lifetime-limited trend. We use a simplified model assuming tracer-tracer linear correlations to determine CCl4 lifetime in the lower stratosphere. The calculation provides a global average lifetime of 46(38–60) years considering CFC-11 as the reference tracer. This value is consistent with the most recent literature result of 44(36–58) years.


2021 ◽  
Vol 14 (12) ◽  
pp. 7975-7998
Author(s):  
Bianca Maria Dinelli ◽  
Piera Raspollini ◽  
Marco Gai ◽  
Luca Sgheri ◽  
Marco Ridolfi ◽  
...  

Abstract. The observations acquired during the full mission of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument, aboard the European Space Agency Environmental Satellite (Envisat), have been analysed with version 8.22 of the Optimised Retrieval Model (ORM), originally developed as the scientific prototype of the ESA level-2 processor for MIPAS observations. The results of the analyses have been included into the MIPAS level-2 version 8 (level2-v8) database containing atmospheric fields of pressure, temperature, and volume mixing ratio (VMR) of MIPAS main targets H2O, O3, HNO3, CH4, N2O, and NO2, along with the minor gases CFC-11, ClONO2, N2O5, CFC-12, COF2, CCl4, CF4, HCFC-22, C2H2, CH3Cl, COCl2, C2H6, OCS, and HDO. The database covers all the measurements acquired by MIPAS in the nominal measurement mode of the full resolution (FR) part of the mission (from July 2002 to March 2004) and all the observation modes of the optimised resolution (OR) part (from January 2005 to April 2012). The number of species included in the MIPAS level2-v8 dataset makes it of particular importance for the studies of stratospheric chemistry. The database is considered by ESA the final release of the MIPAS level-2 products. The ORM algorithm is operated at the vertical grid coincident to the tangent altitudes of the observations or to a subset of them, spanning (in the nominal mode) the altitude range from 6 to 68 km in the FR phase and from 6 to 70 km in the OR period. In the latitude domain, FR profiles are spaced by about 4.7∘, while the OR profiles are spaced by about 3.7∘. For each retrieved species, the auxiliary data and the retrieval choices are described. Each product is characterised in terms of the retrieval error, spatial resolution, and “useful” vertical range in both phases of the MIPAS mission. These depend on the characteristics of the measurements (spectral and vertical resolution of the measurements), the retrieval choices (number of spectral points included in the analyses, number of altitudes included in the vertical retrieval grid), and the information content of the measurements for each trace species. For temperature, water vapour, ozone, and nitric acid, the number of degrees of freedom is significantly larger in the OR phase than in the FR one, mainly due to the finer vertical measurement grid. In the FR phase, some trace species are characterised by a smaller retrieval error with respect to the OR phase, mainly due to the larger number of spectral points used in the analyses, along with the reduced vertical resolution. The way of handling possible caveats (negative VMR, vertical grid representation) is discussed. The quality of the retrieved profiles is assessed through four criteria, two providing information on the successful convergence of the retrieval iterations, one on the capability of the retrieval to reproduce the measurements, and one on the presence of outliers. An easy way to identify and filter the problematic profiles with the information contained in the output files is provided. MIPAS level2-v8 data are available to the scientific community through the ESA portal (https://doi.org/10.5270/EN1-c8hgqx4).


2021 ◽  
Author(s):  
Bianca Maria Dinelli ◽  
Piera Raspollini ◽  
Marco Gai ◽  
Luca Sgheri ◽  
Marco Ridolfi ◽  
...  

Abstract. The observations acquired during the full mission of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument, on board the European Space Agency ENVISAT satellite, have been analysed with version 8.22 of the Optimised Retrieval Model (ORM), originally developed as the scientific prototype of the ESA level 2 processor for MIPAS observations. The results of the analyses have been included into the MIPAS level 2 version 8 (level2-v8) database containing atmospheric fields of pressure, temperature and volume mixing ratio of MIPAS main targets H2O, O3, HNO3, CH4, N2O, and NO2, along with the minor gases CFC-11, ClONO2, N2O5, CFC-12, COF2, CCl4, CF4, HCFC-22, C2H2, CH3Cl, COCl2, C2H6, OCS, HDO. The database covers all the measurements acquired by MIPAS in the nominal measurement mode of the Full Resolution (FR) part of the mission (from July 2002 to March 2004) and all the observation modes of the Optimised Resolution (OR) part (from January 2005 to April 2012). The number of species included in the MIPAS level2-v8 data-set makes it of particular importance for the studies of stratospheric chemistry. The database is considered by ESA the final release of the MIPAS level 2 products. The ORM algorithm is operated at the vertical grid coincident to the tangent altitudes of the observations or to a subset of them, spanning (in the nominal mode) the altitude range from 6 to 68 km in the FR phase and from 6 to 70 km in the OR period. In the latitude domain, FR profiles are spaced by about 4.7 degrees while the OR profiles are spaced by about 3.7 degrees. For each retrieved species the auxiliary data and the retrieval choices are described. Each product is characterised in terms of the retrieval error, spatial resolution, and 'useful' vertical range in both phases of the MIPAS mission. These depend on the characteristics of the measurements (spectral and vertical resolution of the measurements), on the retrieval choices (number of spectral points included in the analyses, number of altitudes included in the vertical retrieval grid), and on the information content of the measurements for each trace species. For temperature, water vapour, ozone and nitric acid the number of degrees of freedom is significantly larger in the OR phase than in the FR one, mainly due to the finer vertical measurement grid. In the FR phase some trace species are characterised by a smaller retrieval error with respect to the OR phase, mainly due to the larger number of spectral points used in the analyses, along with the reduced vertical resolution. The way of handling possible caveats (negative VMR, vertical grid representation) is discussed. The quality of the retrieved profiles is assessed through four criteria, two providing information on the successful convergence of the retrieval iterations, one on the capability of the retrieval to reproduce the measurements, and one on the presence of outliers. An easy way to identify and filter the problematic profiles with the information contained in the output files is provided. MIPAS level2-v8 data are available to the scientific community through the ESA portal https://earth.esa.int/eogateway/.


Sign in / Sign up

Export Citation Format

Share Document