scholarly journals Analysis of vertical wave number spectrum of atmospheric gravity waves in the stratosphere using COSMIC GPS radio occultation data

2011 ◽  
Vol 4 (8) ◽  
pp. 1627-1636 ◽  
Author(s):  
T. Tsuda ◽  
X. Lin ◽  
H. Hayashi ◽  

Abstract. GPS radio occultation (RO) is characterized by high accuracy and excellent height resolution, which has great advantages in analyzing atmospheric structures including small-scale vertical fluctuations. The vertical resolution of the geometrical optics (GO) method in the stratosphere is about 1.5 km due to Fresnel radius limitations, but full spectrum inversion (FSI) can provide superior resolutions. We applied FSI to COSMIC GPS-RO profiles from ground level up to 30 km altitude, although basic retrieval at UCAR/CDAAC sets the sewing height from GO to FSI below the tropopause. We validated FSI temperature profiles with routine high-resolution radiosonde data in Malaysia and North America collected within 400 km and about 30 min of the GPS RO events. The average discrepancy at 10–30 km altitude was less than 0.5 K, and the bias was equivalent with the GO results. Using the FSI results, we analyzed the vertical wave number spectrum of normalized temperature fluctuations in the stratosphere at 20–30 km altitude, which exhibits good consistency with the model spectra of saturated gravity waves. We investigated the white noise floor that tends to appear at high wave numbers, and the substantial vertical resolution of the FSI method was estimated as about 100–200 m in the lower stratosphere. We also examined a criterion for the upper limit of the FSI profiles, beyond which bending angle perturbations due to system noises, etc., could exceed atmospheric excess phase fluctuations. We found that the FSI profiles can be used up to about 28 km in studies of temperature fluctuations with vertical wave lengths as short as 0.5 km.

2011 ◽  
Vol 4 (2) ◽  
pp. 2071-2097
Author(s):  
T. Tsuda ◽  
X. Lin ◽  
H. Hayashi ◽  

Abstract. GPS radio occultation (RO) is characterized by high accuracy and excellent height resolution, which has great advantages in analyzing atmospheric structures including small-scale vertical fluctuations. The vertical resolution of the geometrical optics (GO) method in the stratosphere is about 1.5 km due to Fresnel radius limitations, but full spectrum inversion (FSI) can provide superior resolutions. We applied FSI to COSMIC GPS-RO profiles from ground level up to 30 km altitude, although basic retrieval at UCAR/CDAAC sets the sewing height from GO to FSI below the tropopause. We validated FSI temperature profiles with routine high-resolution radiosonde data in Malaysia and North America collected within 400 km and about 30 min of the GPS RO events. The average discrepancy at 10–30 km altitude was less than 0.5 K, and the bias was equivalent with the GO results. Using the FSI results, we analyzed the vertical wave number spectrum of normalized temperature fluctuations in the stratosphere at 20–30 km altitude, which exhibits good consistency with the model spectra of saturated gravity waves. We investigated the white noise floor that tends to appear at high wave numbers, and the substantial vertical resolution of the FSI method was estimated as about 100–200 m in the lower stratosphere. We also examined a criterion for the upper limit of the FSI profiles, beyond which bending angle perturbations due to system noises, etc, could exceed atmospheric excess phase fluctuations. We found that the FSI profiles can be used up to about 28 km in studies of temperature fluctuations with vertical wave lengths as short as 0.5 km.


2014 ◽  
Vol 14 (2) ◽  
pp. 641-658 ◽  
Author(s):  
F. Chane Ming ◽  
C. Ibrahim ◽  
C. Barthe ◽  
S. Jolivet ◽  
P. Keckhut ◽  
...  

Abstract. Gravity waves (GWs) with horizontal wavelengths of 32–2000 km are investigated during tropical cyclone (TC) Ivan (2008) in the southwest Indian Ocean in the upper troposphere (UT) and the lower stratosphere (LS) using observational data sets, radiosonde and GPS radio occultation data, ECMWF analyses and simulations of the French numerical model Meso-NH with vertical resolution < 150 m near the surface and 500 m in the UT/LS. Observations reveal dominant low-frequency GWs with short vertical wavelengths of 0.7–3 km, horizontal wavelengths of 80–400 km and periods of 4.6–13 h in the UT/LS. Continuous wavelet transform and image-processing tools highlight a wide spectrum of GWs with horizontal wavelengths of 40–1800 km, short vertical wavelengths of 0.6–3.3 km and periods of 20 min–2 days from modelling analyses. Both ECMWF and Meso-NH analyses are consistent with radiosonde and GPS radio occultation data, showing evidence of a dominant TC-related quasi-inertia GW propagating eastward east of TC Ivan with horizontal and vertical wavelengths of 400–800 km and 2–3 km respectively in the LS, more intense during TC intensification. In addition, the Meso-NH model produces a realistic, detailed description of TC dynamics, some high-frequency GWs near the TC eye, variability of the tropospheric and stratospheric background wind and TC rainband characteristics at different stages of TC Ivan. A wave number 1 vortex Rossby wave is suggested as a source of dominant inertia GW with horizontal wavelengths of 400–800 km, while shorter scale modes (100–200 km) located at northeast and southeast of the TC could be attributed to strong localized convection in spiral bands resulting from wave number 2 vortex Rossby waves. Meso-NH simulations also reveal GW-related clouds east of TC Ivan.


2017 ◽  
Vol 10 (3) ◽  
pp. 1093-1110 ◽  
Author(s):  
Therese Rieckh ◽  
Richard Anthes ◽  
William Randel ◽  
Shu-Peng Ho ◽  
Ulrich Foelsche

Abstract. We use GPS radio occultation (RO) data to investigate the structure and temporal behavior of extremely dry, high-ozone tropospheric air in the tropical western Pacific during the 6-week period of the CONTRAST (CONvective TRansport of Active Species in the Tropics) experiment (January and February 2014). Our analyses are aimed at testing whether the RO method is capable of detecting these extremely dry layers and evaluating comparisons with in situ measurements, satellite observations, and model analyses. We use multiple data sources as comparisons, including CONTRAST research aircraft profiles, radiosonde profiles, AIRS (Atmospheric Infrared Sounder) satellite retrievals, and profiles extracted from the ERA (ERA-Interim reanalysis) and the GFS (US National Weather Service Global Forecast System) analyses, as well as MTSAT-2 satellite images. The independent and complementary radiosonde, aircraft, and RO data provide high vertical resolution observations of the dry layers. However, they all have limitations. The coverage of the radiosonde data is limited by having only a single station in this oceanic region; the aircraft data are limited in their temporal and spatial coverage; and the RO data are limited in their number and horizontal resolution over this period. However, nearby observations from the three types of data are highly consistent with each other and with the lower-vertical-resolution AIRS profiles. They are also consistent with the ERA and GFS data. We show that the RO data, used here for the first time to study this phenomenon, contribute significant information on the water vapor content and are capable of detecting layers in the tropics and subtropics with extremely low humidity (less than 10 %), independent of the retrieval used to extract moisture information. Our results also verify the quality of the ERA and GFS data sets, giving confidence to the reanalyses and their use in diagnosing the full four-dimensional structure of the dry layers.


2018 ◽  
Author(s):  
Viktoria F. Sofieva ◽  
Francis Dalaudier ◽  
Alain Hauchecorne ◽  
Valery Kan

Abstract. In this paper, we describe the inversion algorithm for retrievals of high vertical resolution temperature profiles using bi-chromatic stellar scintillation measurements in the occultation geometry. This retrieval algorithm has been improved with respect to nominal ESA processing and applied to the measurements by Global Ozone Monitoring by Occultation of Stars (GOMOS) operated on board Envisat in 2002–2012. The retrieval method exploits the chromatic refraction in the Earth's atmosphere. The bi-chromatic scintillations allow the determination of the refractive angle, which is proportional to the time delay between the photometer signals. The paper discusses the basic principle and detailed inversion algorithm for reconstruction of high resolution density, pressure and temperature profiles (HRTP) in the stratosphere from scintillation measurements. The HRTP profiles are retrieved with very good vertical resolution of ~200 m and high accuracy of ~1–3 K for altitudes of 15–32 km and with a global coverage. The best accuracy is achieved in in-orbital-plane occultations, and the accuracy weakly depends on star brightness. The whole GOMOS dataset has been processed with the improved HRTP inversion algorithm using the FMI's Scientific Processor; and the dataset (HRTP FSP v1) is in open access. The validation of small-scale fluctuations in the retrieved HRTP profiles is performed via comparison of vertical wavenumber spectra of temperature fluctuations in HRTP and in collocated radiosonde data. We found that the spectral features of temperature fluctuations are very similar in HRTP and collocated radiosonde temperature profiles. HRTP can be assimilated into atmospheric models, used in studies of stratospheric clouds and in analysis of internal gravity waves activity. As an example of geophysical applications, gravity wave potential energy has been estimated using the HRTP dataset. The obtained spatio-temporal distributions of gravity wave energy are in good agreement with the previous analyses using other measurements.


2019 ◽  
Vol 12 (1) ◽  
pp. 585-598 ◽  
Author(s):  
Viktoria F. Sofieva ◽  
Francis Dalaudier ◽  
Alain Hauchecorne ◽  
Valery Kan

Abstract. In this paper, we describe the inversion algorithm for retrievals of high vertical resolution temperature profiles (HRTPs) using bichromatic stellar scintillation measurements in the occultation geometry. This retrieval algorithm has been improved with respect to nominal ESA processing and applied to the measurements by Global Ozone Monitoring by Occultation of Stars (GOMOS) operated on board Envisat in 2002–2012. The retrieval method exploits the chromatic refraction in the Earth's atmosphere. The bichromatic scintillations allow the determination of the refractive angle, which is proportional to the time delay between the photometer signals. The paper discusses the basic principle and detailed inversion algorithm for reconstruction of high-resolution density, pressure and temperature profiles in the stratosphere from scintillation measurements. The HRTPs are retrieved with a very good vertical resolution of ∼200 m and high precision (random uncertainty) of ∼1–3 K for altitudes of 15–32 km and with a global coverage. The best accuracy is achieved for in-orbital-plane occultations, and the precision weakly depends on star brightness. The whole GOMOS dataset has been processed with the improved HRTP inversion algorithm using the FMI's scientific processor; and the dataset (HRTP FSP v1) is in open access. The validation of small-scale fluctuations in the retrieved HRTPs is performed via comparison of vertical wavenumber spectra of temperature fluctuations in HRTPs and in collocated radiosonde data. We found that the spectral features of temperature fluctuations are very similar in HRTPs and collocated radiosonde temperature profiles. HRTPs can be assimilated into atmospheric models, used in studies of stratospheric clouds and used for the analysis of internal gravity waves' activity. As an example of geophysical applications, gravity wave potential energy has been estimated using the HRTP dataset. The obtained spatiotemporal distributions of gravity wave energy are in good agreement with the previous analyses using other measurements.


2016 ◽  
Author(s):  
Therese Rieckh ◽  
Richard Anthes ◽  
William Randel ◽  
Shu-Peng Ho ◽  
Ulrich Foelsche

Abstract. We use GPS Radio Occultation (RO) data to investigate the structure and temporal behavior of extremely dry, high-ozone tropospheric air in the Tropical Western Pacific during the six-week period of the CONTRAST (CONvective TRansport of Active Species in the Tropics) experiment (January and February 2014). Our analyses are aimed at testing if the RO method is capable of detecting these extremely dry layers, and evaluating comparisons with in situ measurements, satellite observations, and model analyses. We use multiple data sources as comparisons, including CONTRAST research aircraft profiles, radiosonde profiles, AIRS (Atmospheric Infrared Sounder) satellite retrievals, and profiles extracted from the ERA (ERA-Interim Reanalysis) and the GFS (US National Weather Service Global Forecast System) analyses, as well as MTSAT-2 satellite images. The independent and complementary radiosonde, aircraft, and RO data provide high vertical resolution observations of the dry layers. However, they all have limitations. The coverage of the radiosonde data is limited by having only a single station in this oceanic region; the aircraft data are limited in their temporal and spatial coverage; and the RO data are limited in their number and horizontal resolution over this period. However, nearby observations from the three types of data are highly consistent with each other and with the lower-vertical resolution AIRS profiles. They are also consistent with the ERA and GFS data. We show that the RO data, used here for the first time to study this phenomenon, contribute significant information on the water vapor content and are capable of detecting layers in the tropics and subtropics with extremely low humidity (less than 10 %), independent of the retrieval used to extract moisture information. Our results also verify the quality of the ERA data set, giving confidence to the reanalysis and its use in diagnosing the full four-dimensional structure of the dry layers.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Wei Cheng ◽  
Youping Xu ◽  
Zhiwu Deng ◽  
Chunli Gu

Based on the Backward Four-Dimensional Variational Data Assimilation (Backward-4DVar) system with the Advanced Regional Eta-coordinate Model (AREM), which is capable of assimilating radio occultation data, a heavy rainfall case study is performed using GPS radio occultation (GPS RO) data and routine GTS data on July 5, 2007. The case study results indicate that the use of radio occultation data after quality control can improve the quality of the analysis to be similar to that of the observations and, thus, have a positive effect when improving 24-hour rainfall forecasts. Batch tests for 119 days from May to August during the flood season in 2009 show that only the use of GPS RO data can make positive improvements in both 24-hour and 48-hour regional rainfall forecasts and obtain a better B score for 24-hour forecasts and better TS score for 48-hour forecasts. When using radio occultation refractivity data and conventional radiosonde data, the results indicate that radio occultation refractivity data can achieve a better performance for 48-hour forecasts of light rain and heavy rain.


Sign in / Sign up

Export Citation Format

Share Document