scholarly journals Implementation of a 3D-Var system for atmospheric profiling data assimilation into the RAMS model: initial results

2013 ◽  
Vol 6 (12) ◽  
pp. 3563-3576 ◽  
Author(s):  
S. Federico

Abstract. This paper presents the current status of development of a three-dimensional variational data assimilation system (3D-Var). The system can be used with different numerical weather prediction models, but it is mainly designed to be coupled with the Regional Atmospheric Modelling System (RAMS). Analyses are given for the following parameters: zonal and meridional wind components, temperature, relative humidity, and geopotential height. Important features of the data assimilation system are the use of incremental formulation of the cost function, and the representation of the background error by recursive filters and the eigenmodes of the vertical component of the background error covariance matrix. This matrix is estimated by the National Meteorological Center (NMC) method. The data assimilation and forecasting system is applied to the real context of atmospheric profiling data assimilation, and in particular to the short-term wind prediction. The analyses are produced at 20 km horizontal resolution over central Europe and extend over the whole troposphere. Assimilated data are vertical soundings of wind, temperature, and relative humidity from radiosondes, and wind measurements of the European wind profiler network. Results show the validity of the analyses because they are closer to the observations (lower root mean square error (RMSE)) compared to the background (higher RMSE), and the differences of the RMSEs are in agreement with the data assimilation settings. To quantify the impact of improved initial conditions on the short-term forecast, the analyses are used as initial conditions of three-hours forecasts of the RAMS model. In particular two sets of forecasts are produced: (a) the first uses the ECMWF analysis/forecast cycle as initial and boundary conditions; (b) the second uses the analyses produced by the 3D-Var as initial conditions, then it is driven by the ECMWF forecast. The improvement is quantified by considering the horizontal components of the wind, which are measured at asynoptic times by the European wind profiler network. The results show that the RMSE is effectively reduced at the short range. The results are in agreement with the set-up of the numerical experiment.

2013 ◽  
Vol 6 (2) ◽  
pp. 3581-3610
Author(s):  
S. Federico

Abstract. This paper presents the current status of development of a three-dimensional variational data assimilation system. The system can be used with different numerical weather prediction models, but it is mainly designed to be coupled with the Regional Atmospheric Modelling System (RAMS). Analyses are given for the following parameters: zonal and meridional wind components, temperature, relative humidity, and geopotential height. Important features of the data assimilation system are the use of incremental formulation of the cost-function, and the use of an analysis space represented by recursive filters and eigenmodes of the vertical background error matrix. This matrix and the length-scale of the recursive filters are estimated by the National Meteorological Center (NMC) method. The data assimilation and forecasting system is applied to the real context of atmospheric profiling data assimilation, and in particular to the short-term wind prediction. The analyses are produced at 20 km horizontal resolution over central Europe and extend over the whole troposphere. Assimilated data are vertical soundings of wind, temperature, and relative humidity from radiosondes, and wind measurements of the European wind profiler network. Results show the validity of the analysis solutions because they are closer to the observations (lower RMSE) compared to the background (higher RMSE), and the differences of the RMSEs are consistent with the data assimilation settings. To quantify the impact of improved initial conditions on the short-term forecast, the analyses are used as initial conditions of a three-hours forecast of the RAMS model. In particular two sets of forecasts are produced: (a) the first uses the ECMWF analysis/forecast cycle as initial and boundary conditions; (b) the second uses the analyses produced by the 3-D-Var scheme as initial conditions, then is driven by the ECMWF forecast. The improvement is quantified by considering the horizontal components of the wind, which are measured at a-synoptic times by the European wind profiler network. The results show that the RMSE is effectively reduced at the short range (1–2 h). The results are in agreement with the set-up of the numerical experiment.


2014 ◽  
Vol 142 (10) ◽  
pp. 3586-3613 ◽  
Author(s):  
A. Routray ◽  
S. C. Kar ◽  
P. Mali ◽  
K. Sowjanya

Abstract In a variational data assimilation system, background error statistics (BES) spread the influence of the observations in space and filter analysis increments through dynamic balance or statistical relationships. In a data-sparse region such as the Bay of Bengal, BES play an important role in defining the location and structure of monsoon depressions (MDs). In this study, the Indian-region-specific BES have been computed for the Weather Research and Forecasting (WRF) three-dimensional variational data assimilation system. A comparative study using single observation tests is carried out using the computed BES and global BES within the WRF system. Both sets of BES are used in the assimilation cycles and forecast runs for simulating the meteorological features associated with the MDs. Numerical experiments have been conducted to assess the relative impact of various BES in the analysis and simulations of the MDs. The results show that use of regional BES in the assimilation cycle has a positive impact on the prediction of the location, propagation, and development of rainbands associated with the MDs. The track errors of MDs are smaller when domain-specific BES are used in the assimilation cycle. Additional experiments have been conducted using data from the Interim European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-Interim) as initial and boundary conditions (IBCs) in the assimilation cycle. The results indicate that the use of domain-dependent BES and high-resolution ERA-I data as IBCs further improved the initial conditions for the model leading to better forecasts of the MDs.


2016 ◽  
Vol 31 (1) ◽  
pp. 217-236 ◽  
Author(s):  
María E. Dillon ◽  
Yanina García Skabar ◽  
Juan Ruiz ◽  
Eugenia Kalnay ◽  
Estela A. Collini ◽  
...  

Abstract Improving the initial conditions of short-range numerical weather prediction (NWP) models is one of the main goals of the meteorological community. Development of data assimilation and ensemble forecast systems is essential in any national weather service (NWS). In this sense, the local ensemble transform Kalman filter (LETKF) is a methodology that can satisfy both requirements in an efficient manner. The Weather Research and Forecasting (WRF) Model coupled with the LETKF, developed at the University of Maryland, College Park, have been implemented experimentally at the NWS of Argentina [Servicio Meteorológico Nacional (SMN)], but at a somewhat lower resolution (40 km) than the operational Global Forecast System (GFS) at that time (27 km). The purpose of this work is not to show that the system presented herein is better than the higher-resolution GFS, but that its performance is reasonably comparable, and to provide the basis for a continued improved development of an independent regional data assimilation and forecasting system. The WRF-LETKF system is tested during the spring of 2012, using the prepared or quality controlled data in Binary Universal Form for Representation of Meteorological Data (PREPBUFR) observations from the National Centers for Environmental Prediction (NCEP) and lateral boundary conditions from the GFS. To assess the effect of model error, a single-model LETKF system (LETKF-single) is compared with a multischeme implementation (LETKF-multi), which uses different boundary layer and cumulus convection schemes for the generation of the ensemble of forecasts. The performance of both experiments during the test period shows that the LETKF-multi usually outperforms the LETKF-single, evidencing the advantages of the use of the multischeme approach. Both data assimilation systems are slightly worse than the GFS in terms of the synoptic environment representation, as could be expected given their lower resolution. Results from a case study of a strong convective system suggest that the LETKF-multi improves the location of the most intense area of precipitation with respect to the LETKF-single, although both systems show an underestimation of the total accumulated precipitation. These preliminary results encourage continuing the development of an operational data assimilation system based on WRF-LETKF at the SMN.


Author(s):  
Hans Hersbach ◽  
Bill Bell ◽  
Paul Berrisford ◽  
Per Dahlgren ◽  
András Horányi ◽  
...  

<p>Reanalysis is a key contribution to the Copernicus Climate Change Service (C3S) that is implemented at the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of the European Commission. The most recent ECMWF reanalysis, ERA5, provides hourly estimates of the global atmosphere, land surface and ocean waves at a horizontal resolution of 31km. Daily updates are provided with a latency of 5 days, while an extension back to 1950 is to be made available in the 2nd quarter of 2020.<br>ERA5 uses a 2016 version of the ECMWF numerical weather prediction model and data assimilation system (Integrated Forecasting System Cy41r2) to assimilate both in situ and satellite observations (95 billion for the period 1979 - 2019), many of which stem from reprocessed data records. The assimilation method includes a variational method for estimating observation biases that respects the heterogeneity within the observing system. Information on random uncertainties in the state estimates is provided by a 10-member ensemble of data assimilations at half the horizontal resolution (63km).<br>This presentation provides a concise overview of the ERA5 data assimilation system. A basic evaluation of characteristics and performance is presented, which includes an inter-comparison with other reanalysis products, such as its predecessor ERA-Interim and several major reanalyses produced elsewhere. Attention is given to the importance of the specification of the background error covariance matrix that determines the weight given to the model's first guess in the assimilation. In addition, a special focus will be on the back extension from 1950 to 1978, where the absence of satellite data prior to the 1970s puts a more demanding constraint on the data assimilation system.</p>


2020 ◽  
Author(s):  
Máté Mile ◽  
Roger Randriamampianina ◽  
Gert-Jan Marseille

<p align="justify">Nowadays, satellite observations are providing primary information for initial conditions of state-of-the-art numerical weather prediction (NWP) systems and the amount of remote sensing data in the Global Observing System increases rapidly. However, the way such data are assimilated is usually conservative and sub-optimal especially in high resolution limited-area models. Our objective is to improve the use of scatterometer observations from polar-orbiting satellites by taking into account the observation footprint and reducing the observation representation error through the observation operator.</p><p align="justify"> </p><p align="justify">The variational assimilation system (including 3D- and 4D-Var) of HARMONIE-AROME is widely used for research and operational NWP purposes by many European countries. In most cases, the HARMONIE-AROME model and its data assimilation are run on higher resolution (corresponding to around 2.5km grid size or smaller) than the effective resolution of some satellite observations (e.g. the effective resolution of scatterometer instruments). The use of ASCAT scatterometer observations is studied in an Arctic data assimilation system (AROME-Arctic) and a new observation operator (called supermodding) is evaluated in terms of scatterometer representation error. The results are demonstrated through data assimilation diagnostics, observing system experiments and case studies focusing on the challenges of the Arctic weather forecasting as well.</p>


Author(s):  
Shixuan Zhang ◽  
Zhaoxia Pu

The feasibility of a hurricane initialization framework based on the GSI-4DEnVar data assimilation system for the HWRF model is evaluated in this study. The system considers the temporal evolution of error covariances via the use of four-dimensional ensemble perturbations that are provided by high-resolution, self-consistent HWRF ensemble forecasts. It is different from the configuration of the GSI-3DEnVar data assimilation system, similar to that used in the operational HWRF, which employs background error covariances provided by coarser-resolution global ensembles from the NCEP GFS ensemble Kalman filtering data assimilation system. Data assimilation and numerical simulation experiments for Hurricanes Joaquin (2015), Patricia (2015), and Matthew (2016) are conducted during their intensity changes. The impacts of two initialization frameworks on the HWRF analyses and forecasts are compared. It is found that GSI-4DEnVar leads to a reduction in track, MSLP, and MSW forecast errors in all of the HWRF simulations, compared with the GSI-3DEnVar initialization framework. Further diagnoses with Hurricane Joaquin indicate that GSI-4DEnVar can significantly alleviate the imbalances in the initial conditions and enhance the performance of the data assimilation and subsequent hurricane intensity and precipitation forecasts.


2017 ◽  
Vol 32 (1) ◽  
pp. 83-96 ◽  
Author(s):  
Wan-Shu Wu ◽  
David F. Parrish ◽  
Eric Rogers ◽  
Ying Lin

Abstract At the National Centers for Environmental Prediction, the global ensemble forecasts from the ensemble Kalman filter scheme in the Global Forecast System are applied in a regional three-dimensional (3D) and a four dimensional (4D) ensemble–variational (EnVar) data assimilation system. The application is a one-way variational method using hybrid static and ensemble error covariances. To enhance impact, three new features have been added to the existing EnVar system in the Gridpoint Statistical Interpolation (GSI). First, the constant coefficients that assign relative weight between the ensemble and static background error are now allowed to vary in the vertical. Second, a new formulation is introduced for the ensemble contribution to the analysis surface pressure. Finally, in order to make use of the information in the ensemble mean that is disregarded in the existing EnVar in GSI, the trajectory correction, a novel approach, is introduced. Relative to the application of a 3D variational data assimilation algorithm, a clear positive impact on 1–3-day forecasts is realized when applying 3DEnVar analyses in the North American Mesoscale Forecast System (NAM). The 3DEnVar DA system was operationally implemented in the NAM Data Assimilation System in August 2014. Application of a 4DEnVar algorithm is shown to further improve forecast accuracy relative to the 3DEnVar. The approach described in this paper effectively combines contributions from both the regional and the global forecast systems to produce the initial conditions for the regional NAM system.


2013 ◽  
Vol 141 (2) ◽  
pp. 754-772 ◽  
Author(s):  
Sara Q. Zhang ◽  
Milija Zupanski ◽  
Arthur Y. Hou ◽  
Xin Lin ◽  
Samson H. Cheung

Abstract Assimilation of remotely sensed precipitation observations into numerical weather prediction models can improve precipitation forecasts and extend prediction capabilities in hydrological applications. This paper presents a new regional ensemble data assimilation system that assimilates precipitation-affected microwave radiances into the Weather Research and Forecasting Model (WRF). To meet the challenges in satellite data assimilation involving cloud and precipitation processes, hydrometeors produced by the cloud-resolving model are included as control variables and ensemble forecasts are used to estimate flow-dependent background error covariance. Two assimilation experiments have been conducted using precipitation-affected radiances from passive microwave sensors: one for a tropical storm after landfall and the other for a heavy rain event in the southeastern United States. The experiments examined the propagation of information in observed radiances via flow-dependent background error auto- and cross covariance, as well as the error statistics of observational radiance. The results show that ensemble assimilation of precipitation-affected radiances improves the quality of precipitation analyses in terms of spatial distribution and intensity in accumulated surface rainfall, as verified by independent ground-based precipitation observations.


Author(s):  
Magnus Lindskog ◽  
Adam Dybbroe ◽  
Roger Randriamampianina

AbstractMetCoOp is a Nordic collaboration on operational Numerical Weather Prediction based on a common limited-area km-scale ensemble system. The initial states are produced using a 3-dimensional variational data assimilation scheme utilizing a large amount of observations from conventional in-situ measurements, weather radars, global navigation satellite system, advanced scatterometer data and satellite radiances from various satellite platforms. A version of the forecasting system which is aimed for future operations has been prepared for an enhanced assimilation of microwave radiances. This enhanced data assimilation system will use radiances from the Microwave Humidity Sounder, the Advanced Microwave Sounding Unit-A and the Micro-Wave Humidity Sounder-2 instruments on-board the Metop-C and Fengyun-3 C/D polar orbiting satellites. The implementation process includes channel selection, set-up of an adaptive bias correction procedure, and careful monitoring of data usage and quality control of observations. The benefit of the additional microwave observations in terms of data coverage and impact on analyses, as derived using the degree of freedom of signal approach, is demonstrated. A positive impact on forecast quality is shown, and the effect on the precipitation for a case study is examined. Finally, the role of enhanced data assimilation techniques and adaptions towards nowcasting are discussed.


Sign in / Sign up

Export Citation Format

Share Document