scholarly journals Ambient measurements of aromatic and oxidized VOCs by PTR-MS and GC-MS: intercomparison between four instruments in a boreal forest in Finland

2015 ◽  
Vol 8 (10) ◽  
pp. 4453-4473 ◽  
Author(s):  
M. K. Kajos ◽  
P. Rantala ◽  
M. Hill ◽  
H. Hellén ◽  
J. Aalto ◽  
...  

Abstract. Proton transfer reaction mass spectrometry (PTR-MS) and gas chromatography mass spectrometry GC-MS) are commonly used methods for automated in situ measurements of various volatile organic compounds (VOCs) in the atmosphere. In order to investigate the reliability of such measurements, we operated four automated analyzers using their normal field measurement protocol side by side at a boreal forest site. We measured methanol, acetaldehyde, acetone, benzene and toluene by two PTR-MS and two GC-MS instruments. The measurements were conducted in southern Finland between 13 April and 14 May 2012. This paper presents correlations and biases between the concentrations measured using the four instruments. A very good correlation was found for benzene and acetone measurements between all instruments (the mean R value was 0.88 for both compounds), while for acetaldehyde and toluene the correlation was weaker (with a mean R value of 0.50 and 0.62, respectively). For some compounds, notably for methanol, there were considerable systematic differences in the mixing ratios measured by the different instruments, despite the very good correlation between the instruments (mean R = 0.90). The systematic difference manifests as a difference in the linear regression slope between measurements conducted between instruments, rather than as an offset. This mismatch indicates that the systematic uncertainty in the sensitivity of a given instrument can lead to an uncertainty of 50–100 % in the methanol emissions measured by commonly used methods.

2015 ◽  
Vol 8 (4) ◽  
pp. 3753-3802 ◽  
Author(s):  
M. K. Kajos ◽  
P. Rantala ◽  
M. Hill ◽  
H. Hellén ◽  
J. Aalto ◽  
...  

Abstract. Proton transfer reaction mass spectrometry (PTR-MS) and gas chromatography mass spectrometry GC-MS) allow real-time measurements of various atmospheric volatile organic compounds (VOC). By taking parallel measurements in ambient conditions, two PTR-MSs and two GC-MSs were studied for their ability to measure methanol, acetaldehyde, acetone, benzene and toluene. The measurements were conducted at a rural boreal forest site in southern Finland between 13 April and 14 May 2012. This paper presents correlations and possible biases between the concentrations measured using the four instruments. This paper presents correlations and possible biases between the concentrations measured using the four instruments. A very good correlation was found for benzene and acetone measurements between all instruments (the mean R value was 0.88 for both compounds), while for acetaldehyde and toluene the correlation was weaker (with a mean R value of 0.50 and 0.62, respectively). For some compounds, notably for methane, there were considerable systematic differences in the mixing ratios measured by the different instruments, despite the very good correlation between the instruments (mean R = 0.90). The systematic difference arises as a difference in the linear regression slope between measurements conducted between instruments, rather than as an offset. This mismatch indicates that the systematic uncertainty in the sensitivity of a given instrument can lead to an uncertainty of 50–100% in the methanol emissions measured by commonly used methods.


2015 ◽  
Vol 15 (23) ◽  
pp. 13413-13432 ◽  
Author(s):  
J. Patokoski ◽  
T. M. Ruuskanen ◽  
M. K. Kajos ◽  
R. Taipale ◽  
P. Rantala ◽  
...  

Abstract. In this study a long-term volatile organic compound (VOCs) concentration data set, measured at the SMEAR II (Station for Measuring Ecosystem–Atmosphere Relations) boreal forest site in Hyytiälä, Finland during the years 2006–2011, was analyzed in order to identify source areas and profiles of the observed VOCs. VOC mixing ratios were measured using proton transfer reaction mass spectrometry. Four-day HYSPLIT 4 (Hybrid Single Particle Lagrangian Integrated Trajectory) backward trajectories and the Unmix 6.0 receptor model were used for source area and source composition analysis. Two major forest fire events in Russia took place during the measurement period. The effect of these fires was clearly visible in the trajectory analysis, lending confidence to the method employed with this data set. Elevated volume mixing ratios (VMRs) of non-biogenic VOCs related to forest fires, e.g. acetonitrile and aromatic VOCs, were observed. Ten major source areas for long-lived VOCs (methanol, acetonitrile, acetaldehyde, acetone, benzene, and toluene) observed at the SMEAR II site were identified. The main source areas for all the targeted VOCs were western Russia, northern Poland, Kaliningrad, and the Baltic countries. Industrial areas in northern continental Europe were also found to be source areas for certain VOCs. Both trajectory and receptor analysis showed that air masses from northern Fennoscandia were less polluted with respect to both the VOCs studied and other trace gases (CO, SO2 and NOx), compared to areas of eastern and western continental Europe, western Russia, and southern Fennoscandia.


2015 ◽  
Vol 15 (10) ◽  
pp. 14593-14641
Author(s):  
J. Patokoski ◽  
T. M. Ruuskanen ◽  
M. K. Kajos ◽  
R. Taipale ◽  
P. Rantala ◽  
...  

Abstract. In this study a long-term volatile organic compounds (VOCs) data set, measured at the SMEAR II (Station for measuring Ecosystem–Atmosphere Relations) boreal forest site at Hyytiälä, Finland during the years 2006–2011, was investigated. VOC mixing ratios were measured using proton transfer reaction mass spectrometry. Four-day backward trajectories and the Unmix 6.0 receptor model were used for source area and source composition analysis. Two major forest fire events, one in Eastern Europe and one in Russia, took place during the measurement period. The effect of these fires was clearly visible in the trajectory analysis, lending confidence to the method employed with this data set. Elevated volume mixing ratios (VMRs) of non-biogenic VOCs, e.g. acetonitrile and aromatic VOCs, related to forest fires were observed. Ten major source areas for long-lived VOCs (methanol, acetonitrile, acetaldehyde, acetone, benzene and toluene) were identified at the SMEAR II site. The main source areas for all the targeted VOCs were Western Russia, Northern Poland, Kaliningrad and Baltic countries. Industrial areas in Northern Continental Europe were also found to be source areas for certain VOCs. Both trajectory and receptor analysis showed that air masses from Northern Fennoscandia were less polluted with both the VOCs studied and with other trace gases (CO, SO2 and NOx) than areas of Eastern and Western Continental Europe, Western Russia and Southern Fennoscandia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kajsa Roslund ◽  
Markku Lehto ◽  
Pirkko Pussinen ◽  
Kari Hartonen ◽  
Per-Henrik Groop ◽  
...  

AbstractWe have measured the volatile fingerprints of four pathogenic oral bacteria connected to periodontal disease and dental abscess: Porphyromonas gingivalis (three separate strains), Prevotella intermedia, Prevotella nigrescens and Tannerella forsythia. Volatile fingerprints were measured in vitro from the headspace gas of the bacteria cultured on agar. Concrete identification of new and previously reported bacterial volatiles were performed by a combination of solid phase microextraction (SPME) and offline gas chromatography–mass spectrometry (GC–MS). We also studied the effect of the reduced electric field strength (E/N) on the fragmentation patterns of bacterial volatiles in online proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS). We aimed to discover possible new biomarkers for the studied oral bacteria, as well as to validate the combination of GC–MS and PTR-MS for volatile analysis. Some of the most promising compounds produced include: 1-Methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ), indole, and a cascade of sulphur compounds, such as methanethiol, dimethyl disulphide (DMDS) and dimethyl trisulphide (DMTS). We also found that several compounds, especially alcohols, aldehydes and esters, fragment significantly with the PTR-MS method, when high E/N values are used. We conclude that the studied oral bacteria can be separated by their volatile fingerprints in vitro, which could have importance in clinical and laboratory environments. In addition, using softer ionization conditions can improve the performance of the PTR-MS method in the volatile analysis of certain compounds.


2015 ◽  
Vol 15 (9) ◽  
pp. 5083-5097 ◽  
Author(s):  
M. D. Shaw ◽  
J. D. Lee ◽  
B. Davison ◽  
A. Vaughan ◽  
R. M. Purvis ◽  
...  

Abstract. Highly spatially resolved mixing ratios of benzene and toluene, nitrogen oxides (NOx) and ozone (O3) were measured in the atmospheric boundary layer above Greater London during the period 24 June to 9 July 2013 using a Dornier 228 aircraft. Toluene and benzene were determined in situ using a proton transfer reaction mass spectrometer (PTR-MS), NOx by dual-channel NOx chemiluminescence and O3 mixing ratios by UV absorption. Average mixing ratios observed over inner London at 360 ± 10 m a.g.l. were 0.20 ± 0.05, 0.28 ± 0.07, 13.2 ± 8.6, 21.0 ± 7.3 and 34.3 ± 15.2 ppbv for benzene, toluene, NO, NO2 and NOx respectively. Linear regression analysis between NO2, benzene and toluene mixing ratios yields a strong covariance, indicating that these compounds predominantly share the same or co-located sources within the city. Average mixing ratios measured at 360 ± 10 m a.g.l. over outer London were always lower than over inner London. Where traffic densities were highest, the toluene / benzene (T / B) concentration ratios were highest (average of 1.8 ± 0.5 ppbv ppbv-1), indicative of strong local sources. Daytime maxima in NOx, benzene and toluene mixing ratios were observed in the morning (~ 40 ppbv NOx, ~ 350 pptv toluene and ~ 200 pptv benzene) and in the mid-afternoon for ozone (~ 40 ppbv O3), all at 360 ± 10 m a.g.l.


Sign in / Sign up

Export Citation Format

Share Document