scholarly journals Relationships between electron density, height and sub-peak ionospheric thickness in the night equatorial ionosphere

2006 ◽  
Vol 24 (5) ◽  
pp. 1343-1353 ◽  
Author(s):  
K. J. W. Lynn ◽  
T. J. Harris ◽  
M. Sjarifudin

Abstract. The development and decay of the southern equatorial anomaly night-time peak in electron density as seen at a number of ionosonde reflection points extending from New Guinea and Indonesia into northern Australia was examined in terms of the characteristic rise and fall in height associated with the sunset ionisation-drift vortex at the magnetic equator. The observations relate to measurements made in November 1997. Following sunset, the ionospheric profile was observed to narrow as the maximum electron density increased during a fall in height that took the peak of the layer at Vanimo and Sumedang down to some 240 km. The fall was followed by a strong rise in which the electron density sub-peak profile expanded from a slab width (as given by POLAN) of 20 km to over 100km with no corresponding change in peak electron density. The post-sunset equatorial fall in height and associated changes in profile density and thickness continued to be seen with diminishing amplitude and increasing local time delay in moving from the anomaly peak at Vanimo to the southernmost site of observation at Townsville. Secondary events on a lesser scale sometimes occurred later in the night and may provide evidence of the multiple vortices suggested by Kudeki and Bhattacharyya (1999). Doppler measurements of vertical velocity as seen at Sumedang in Java are compared with the observed changes in electron density profile in the post-sunset period. The normal post-sunset variation in ionospheric parameters was disrupted on the night of 7 November, the night before a negative ionospheric storm was observed.

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7369
Author(s):  
Yenca Migoya-Orué ◽  
Katy Alazo-Cuartas ◽  
Anton Kashcheyev ◽  
Christine Amory-Mazaudier ◽  
Sandro Radicella ◽  
...  

The thickness parameters that most empirical models use are generally defined by empirical relations related to ionogram characteristics. This is the case with the NeQuick model that uses an inflection point below the F2 layer peak to define a thickness parameter of the F2 bottomside of the electron density profile, which is named B2. This study is focused on the effects of geomagnetic storms on the thickness parameter B2. We selected three equinoctial storms, namely 17 March 2013, 2 October 2013 and 17 March 2015. To investigate the behavior of the B2 parameter before, during and after those events, we have analyzed variations of GNSS derived vertical TEC (VTEC) and maximum electron density (NmF2) obtained from manually scaled ionograms over 20 stations at middle and low latitudes of Asian, Euro-African and American longitude sectors. The results show two main kinds of responses after the onset of the geomagnetic events: a peak of B2 parameter prior to the increase in VTEC and NmF2 (in ~60% of the cases) and a fluctuation in B2 associated with a decrease in VTEC and NmF2 (~25% of the cases). The behavior observed has been related to the dominant factor acting after the CME shocks associated with positive and negative storm effects. Investigation into the time delay of the different measurements according to location showed that B2 reacts before NmF2 and VTEC after the onset of the storms in all the cases. The sensitivity shown by B2 during the studied storms might indicate that experimentally derived thickness parameter B2 could be incorporated into the empirical models such as NeQuick in order to adapt them to storm situations that represent extreme cases of ionospheric weather-like conditions.


Measurements of the electron content of the ionosphere obtained from observations of the differential Faraday rotation of moon-reflected signals on two closely spaced frequencies are described. Accurate values of the electron content on many successive days near the summer solstices of 1960 and 1961 are presented, and compared and contrasted with similar measurements made in the winter of 1960 (Evans & Taylor 1961). The diurnal variations of electron content, short-period irregular fluctuations in electron content, equivalent slab thickness and top-to-bottom ratio are all found to differ from those observed in winter. The middle latitude seasonal anomaly is found to be less prominent in the electron content than in the maximum electron density .


2003 ◽  
Vol 21 (4) ◽  
pp. 1017-1030 ◽  
Author(s):  
I. Horvath ◽  
E. A. Essex

Abstract. With a well-selected data set, the various events of the vertical E × B drift velocity variations at magnetic-equator-latitudes, the resultant ionospheric features at low-and mid-latitudes, and the practical consequences of these E × B events on the equatorial radio signal propagation are demonstrated. On a global scale, the development of a equatorial anomaly is illustrated with a series of 1995 global TOPEX TEC (total electron content) maps. Locally, in the Australian longitude region, some field-aligned TOPEX TEC cross sections are combined with the matching Guam (144.86° E; 13.59° N, geographic) GPS (Global Positioning System) TEC data, covering the northern crest of the equatorial anomaly. Together, the 1998 TOPEX and GPS TEC data are utilized to show the three main events of vertical E × B drift velocity variations: (1) the pre-reversal enhancement, (2) the reversal and (3) the downward maximum. Their effects on the dual-frequency GPS recordings are documented with the raw Guam GPS TEC data and with the filtered Guam GPS dTEC/min or 1-min GPS TEC data after Aarons et al. (1997). During these E × B drift velocity events, the Port Moresby (147.10° E; - 9.40° N, geographic) virtual height or h'F ionosonde data (km), which cover the southern crest of the equatorial anomaly in the Australian longitude region, show the effects of plasma drift on the equatorial ionosphere. With the net (D) horizontal (H) magnetic field intensity parameter, introduced and called DH or Hequator-Hnon-equator (nT) by Chandra and Rastogi (1974), the daily E × B drift velocity variations are illustrated at 121° E (geographic) in the Australian longitude region. The results obtained with the various data show very clearly that the development of mid-latitude night-time TEC increases is triggered by the westward electric field as the appearance of such night-time TEC increases coincides with the E × B drift velocity reversal. An explanation is offered with the F-region dynamo theory and electrodynamics, and with the ionospheric-plasmaspheric coupling. A comparison is made with the published model results of SUPIM (Sheffield University Plasmasphere-Ionosphere Model; Balan and Bailey, 1995) and experimental results of Park (1971), and the good agreement found is highlighted.Key words. Ionosphere (electric fields; equatorial ionosphere; mid-latitude ionosphere)


1981 ◽  
Vol 64 (11) ◽  
pp. 68-74
Author(s):  
Isamu Nagano ◽  
Masayoshi Mambo ◽  
Tetsuo Fukami ◽  
Koji Namba ◽  
Iwane Kimura

2021 ◽  
Vol 9 ◽  
Author(s):  
M. Turner ◽  
A. J. Gonsalves ◽  
S. S. Bulanov ◽  
C. Benedetti ◽  
N. A. Bobrova ◽  
...  

Abstract We measured the parameter reproducibility and radial electron density profile of capillary discharge waveguides with diameters of 650 $\mathrm{\mu} \mathrm{m}$ to 2 mm and lengths of 9 to 40 cm. To the best of the authors’ knowledge, 40 cm is the longest discharge capillary plasma waveguide to date. This length is important for $\ge$ 10 GeV electron energy gain in a single laser-driven plasma wakefield acceleration stage. Evaluation of waveguide parameter variations showed that their focusing strength was stable and reproducible to $<0.2$ % and their average on-axis plasma electron density to $<1$ %. These variations explain only a small fraction of laser-driven plasma wakefield acceleration electron bunch variations observed in experiments to date. Measurements of laser pulse centroid oscillations revealed that the radial channel profile rises faster than parabolic and is in excellent agreement with magnetohydrodynamic simulation results. We show that the effects of non-parabolic contributions on Gaussian pulse propagation were negligible when the pulse was approximately matched to the channel. However, they affected pulse propagation for a non-matched configuration in which the waveguide was used as a plasma telescope to change the focused laser pulse spot size.


2021 ◽  
Vol 28 (5) ◽  
pp. 052510
Author(s):  
X. R. Zhang ◽  
J. Q. Dong ◽  
H. R. Du ◽  
J. Y. Liu ◽  
Y. Shen ◽  
...  

1999 ◽  
Vol 70 (1) ◽  
pp. 1038-1041 ◽  
Author(s):  
C. W. Domier ◽  
Y. Roh ◽  
N. C. Luhmann

Sign in / Sign up

Export Citation Format

Share Document