scholarly journals The driving mechanisms of particle precipitation during the moderate geomagnetic storm of 7 January 2005

2007 ◽  
Vol 25 (9) ◽  
pp. 2053-2068 ◽  
Author(s):  
N. Longden ◽  
F. Honary ◽  
A. J. Kavanagh ◽  
J. Manninen

Abstract. The arrival of an interplanetary coronal mass ejection (ICME) triggered a sudden storm commencement (SSC) at ~09:22 UT on the 7 January 2005. The ICME followed a quiet period in the solar wind and interplanetary magnetic field (IMF). We present global scale observations of energetic electron precipitation during the moderate geomagnetic storm driven by the ICME. Energetic electron precipitation is inferred from increases in cosmic noise absorption (CNA) recorded by stations in the Global Riometer Array (GLORIA). No evidence of CNA was observed during the first four hours of passage of the ICME or following the sudden commencement (SC) of the storm. This is consistent with the findings of Osepian and Kirkwood (2004) that SCs will only trigger precipitation during periods of geomagnetic activity or when the magnetic perturbation in the magnetosphere is substantial. CNA was only observed following enhanced coupling between the IMF and the magnetosphere, resulting from southward oriented IMF. Precipitation was observed due to substorm activity, as a result of the initial injection and particles drifting from the injection region. During the recovery phase of the storm, when substorm activity diminished, precipitation due to density driven increases in the solar wind dynamic pressure (Pdyn) were identified. A number of increases in Pdyn were shown to drive sudden impulses (SIs) in the geomagnetic field. While many of these SIs appear coincident with CNA, SIs without CNA were also observed. During this period, the threshold of geomagnetic activity required for SC driven precipitation was exceeded. This implies that solar wind density driven SIs occurring during storm recovery can drive a different response in particle precipitation to typical SCs.

1998 ◽  
Vol 16 (1) ◽  
pp. 25-33 ◽  
Author(s):  
E. E. Titova ◽  
T. A. Yahnina ◽  
A. G. Yahnin ◽  
B. B. Gvozdevsky ◽  
A. A. Lyubchich ◽  
...  

Abstract. Specific type of energetic electron precipitation accompanied by a sharp increase in trapped energetic electron flux are found in the data obtained from low-altitude NOAA satellites. These strongly localized variations of the trapped and precipitated energetic electron flux have been observed in the evening sector near the plasmapause during recovery phase of magnetic storms. Statistical characteristics of these structures as well as the results of comparison with proton precipitation are described. We demonstrate the spatial coincidence of localized electron precipitation with cold plasma gradient and whistler wave intensification measured on board the DE-1 and Aureol-3 satellites. A simultaneous localized sharp increase in both trapped and precipitating electron flux could be a result of significant pitch-angle isotropization of drifting electrons due to their interaction via cyclotron instability with the region of sharp increase in background plasma density.Key words. Ionosphere (particle precipitation; wave-particle interaction) Magnetospheric Physics (plasmasphere)


2012 ◽  
Vol 39 (21) ◽  
pp. n/a-n/a ◽  
Author(s):  
M. Daae ◽  
P. Espy ◽  
H. Nesse Tyssøy ◽  
D. Newnham ◽  
J. Stadsnes ◽  
...  

2016 ◽  
Vol 34 (5) ◽  
pp. 493-509 ◽  
Author(s):  
Zheng Xiang ◽  
Binbin Ni ◽  
Chen Zhou ◽  
Zhengyang Zou ◽  
Xudong Gu ◽  
...  

<p><strong>Abstract.</strong> Radiation belt electron flux dropouts are a kind of drastic variation in the Earth's magnetosphere, understanding of which is of both scientific and societal importance. Using electron flux data from a group of 14 satellites, we report multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an event of intense solar wind dynamic pressure pulse. When the pulse occurred, magnetopause and atmospheric loss could take effect concurrently contributing to the electron flux dropout. Losses through the magnetopause were observed to be efficient and significant at <i>L</i> ≳ 5, owing to the magnetopause intrusion into <i>L</i> ∼ 6 and outward radial diffusion associated with sharp negative gradient in electron phase space density. Losses to the atmosphere were directly identified from the precipitating electron flux observations, for which pitch angle scattering by plasma waves could be mainly responsible. While the convection and substorm injections strongly enhanced the energetic electron fluxes up to hundreds of keV, they could delay other than avoid the occurrence of electron flux dropout at these energies. It is demonstrated that the pulse-time radiation belt electron flux dropout depends strongly on the specific interplanetary and magnetospheric conditions and that losses through the magnetopause and to the atmosphere and enhancements of substorm injection play an essential role in combination, which should be incorporated as a whole into future simulations for comprehending the nature of radiation belt electron flux dropouts.</p>


2015 ◽  
Vol 1 (3) ◽  
pp. 11-20 ◽  
Author(s):  
Надежда Куражковская ◽  
Nadezhda Kurazhkovskaya ◽  
Борис Клайн ◽  
Boris Klain

We present the results of investigation of the influence of geomagnetic activity, solar wind and parameters of the interplanetary magnetic field (IMF) on properties of the intermittency of midlatitude burst series of Pi2 geomagnetic pulsations observed during magnetospheric substorms on the nightside (substorm Pi2) and in the absence of these phenomena (nonsub-storm Pi2). We considered the index α as a main characteristic of intermittency of substorm and nonsubstorm Pi2 pulsations. The index α characterizes the slope of the cumulative distribution function of Pi2 burst amplitudes. The study indicated that the value and dynamics of the index α varies depending on the planetary geomagnetic activity, auroral activity and the intensity of magnetospheric ring currents. In addition, the forms of dependences of the index α on the density n, velocity V, dynamic pressure Pd of the solar wind and IMF Bx-component are different. The behavior of the index α depending on the module of B, By- and Bz-components is similar. We found some critical values of V, Pd, B, By- and Bz-components, after reaching of which the turbulence of the magnetotail plasma during substorm development is decreased. The revealed patterns of the intermittency of Pi2 pulsations can be used for qualitative assessment of turbulence level in the magnetotail plasma depending on changing interplanetary conditions.


2020 ◽  
Author(s):  
Eldho Midhun Babu ◽  
Hilde Nesse Tyssøy ◽  
Christine Smith-Johnsen ◽  
Ville Aleksi Maliniemi ◽  
Josephine Alessandra Salice ◽  
...  

&lt;p&gt;Energetic electron precipitation (EEP) from the plasma sheet and the radiation belts, can collide with gases in the atmosphere and deposit their energy. EEP increase the production of NOx and HOx, which will catalytically destroy stratospheric ozone, an important element of atmospheric dynamics. The particle precipitation also causes variation in the radiation belt population. Therefore, measurement of latitudinal extend of the precipitation boundaries is important in quantifying atmospheric effects of Sun-Earth interaction and threats to spacecrafts and astronauts in the Earth&amp;#8217;s radiation belt. &lt;br&gt;This study uses measurements by MEPED detectors of six NOAA/POES and EUMETSAT/METOP satellites during the year 2010 to determine the latitudinal boundaries of EEP and its variability with geomagnetic activity and solar wind drivers. Variation of the boundaries with respect to different particle energies and magnetic local time is studied. The result will be a key element for constructing a model of EEP variability to be applied in atmosphere climate models.&lt;/p&gt;


2017 ◽  
Vol 122 (6) ◽  
pp. 6508-6527 ◽  
Author(s):  
S. Oyama ◽  
A. Kero ◽  
C. J. Rodger ◽  
M. A. Clilverd ◽  
Y. Miyoshi ◽  
...  

2021 ◽  
Author(s):  
Haimeng Li ◽  
Wen Li ◽  
Qianli Ma ◽  
Yukitoshi Nishimura ◽  
Zhigang Yuan ◽  
...  

Abstract. We report an attenuation of hiss wave intensity in the duskside of outer plasmasphere in response to enhanced convection and substorm based on Van Allen Probes observations. Using test particle codes, we simulate the dynamics of energetic electron fluxes based on a realistic magnetospheric electric field model driven by solar wind and subauroral polarization stream. We suggest that the enhanced magnetospheric electric field causes the outward and sunward motion of energetic electrons, corresponding to the decrease of energetic electron fluxes on the duskside, leading to the subsequent attenuation of hiss wave intensity. The results indicate that the enhanced electric field can significantly change the energetic electron distributions, which provide free energy for hiss wave amplification. This new finding is critical for understanding the generation of plasmaspheric hiss and its response to solar wind and substorm activity.


Sign in / Sign up

Export Citation Format

Share Document