scholarly journals The influence of solar wind on extratropical cyclones – Part 2: A link mediated by auroral atmospheric gravity waves?

2009 ◽  
Vol 27 (1) ◽  
pp. 31-57 ◽  
Author(s):  
P. Prikryl ◽  
D. B. Muldrew ◽  
G. J. Sofko

Abstract. Cases of mesoscale cloud bands in extratropical cyclones are observed a few hours after atmospheric gravity waves (AGWs) are launched from the auroral ionosphere. It is suggested that the solar-wind-generated auroral AGWs contribute to processes that release instabilities and initiate slantwise convection thus leading to cloud bands and growth of extratropical cyclones. Also, if the AGWs are ducted to low latitudes, they could influence the development of tropical cyclones. The gravity-wave-induced vertical lift may modulate the slantwise convection by releasing the moist symmetric instability at near-threshold conditions in the warm frontal zone of extratropical cyclones. Latent heat release associated with the mesoscale slantwise convection has been linked to explosive cyclogenesis and severe weather. The circumstantial and statistical evidence of the solar wind influence on extratropical cyclones is further supported by a statistical analysis of high-level clouds (<440 mb) extracted from the International Satellite Cloud Climatology Project (ISCCP) D1 dataset. A statistically significant response of the high-level cloud area index (HCAI) to fast solar wind from coronal holes is found in mid-to-high latitudes during autumn-winter and in low latitudes during spring-summer. In the extratropics, this response of the HCAI to solar wind forcing is consistent with the effect on tropospheric vorticity found by Wilcox et al. (1974) and verified by Prikryl et al. (2009). In the tropics, the observed HCAI response, namely a decrease in HCAI at the arrival of solar wind stream followed by an increase a few days later, is similar to that in the northern and southern mid-to-high latitudes. The amplitude of the response nearly doubles for stream interfaces associated with the interplanetary magnetic field BZ component shifting southward. When the IMF BZ after the stream interface shifts northward, the autumn-winter effect weakens or shifts to lower (mid) latitudes and no statistically significant response is found at low latitudes in spring-summer. The observed effect persists through years of low and high volcanic aerosol loading. The similarity of the response in mid-to-high and low latitudes, the lack of dependence upon aerosol loading, and the enhanced amplitude of the effect when IMF BZ component shifts southward, favor the proposed AGW link over the atmospheric electric circuit (AEC) mechanism (Tinsley et al., 1994). The latter requires the presence of stratospheric aerosols for a significant effect and should produce negative and positive cloud anomalies in mid-to-high and low latitudes, respectively. However, if the requirement of aerosols for the AEC mechanism can be relaxed, the AGW and AEC mechanisms should work in synergy at least in mid-to-high latitudes.

1996 ◽  
Vol 14 (9) ◽  
pp. 917-940 ◽  
Author(s):  
K. Hocke ◽  
K. Schlegel

Abstract. Recent investigations of atmospheric gravity waves (AGW) and travelling ionospheric disturbances (TID) in the Earth\\'s thermosphere and ionosphere are reviewed. In the past decade, the generation of gravity waves at high latitudes and their subsequent propagation to low latitudes have been studied by several global model simulations and coordinated observation campaigns such as the Worldwide Atmospheric Gravity-wave Study (WAGS), the results are presented in the first part of the review. The second part describes the progress towards understanding the AGW/TID characteristics. It points to the AGW/TID relationship which has been recently revealed with the aid of model-data comparisons and by the application of new inversion techniques. We describe the morphology and climatology of gravity waves and their ionospheric manifestations, TIDs, from numerous new observations.


2020 ◽  
Author(s):  
James M. Weygand ◽  
Paul Prikryl ◽  
Reza Ghoddousi-Fard ◽  
Lidia Nikitina ◽  
Bharat S. R. Kunduri

&lt;p&gt;High-speed streams (HSS) from coronal holes dominate solar wind structure in the absence of coronal mass ejections during solar minimum and the descending branch of solar cycle. Prominent and long-lasting coronal holes produce intense co-rotating interaction regions (CIR) on the leading edge of high-speed plasma streams that cause recurrent ionospheric disturbances and geomagnetic storms. Through solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system they affect the ionosphere and neutral atmosphere at high latitudes, and, at mid to low latitudes, by the transmission of the electric fields [1] and propagation of atmospheric gravity waves from the high-latitude lower thermosphere [2].&lt;/p&gt;&lt;p&gt;The high-latitude ionospheric structure, caused by precipitation of energetic particles, strong ionospheric currents and convection, results in changes of the GPS total electron content (TEC) and rapid variations of GPS signal amplitude and phase, called scintillation [3]. The GPS phase scintillation is observed in the ionospheric cusp, polar cap and auroral zone, and is particularly intense during geomagnetic storms, substorms and auroral breakups. Phase scintillation index is computed for a sampling rate of 50 Hz by specialized GPS scintillation receivers from the Canadian High Arctic Ionospheric Network (CHAIN). A proxy index of phase variation is obtained from dual frequency measurements of geodetic-quality GPS receivers sampling at 1 Hz, which include globally distributed receivers of the RT-IGS network that are monitored by the Canadian Geodetic Survey in near-real-time [4]. Temporal and spatial changes of TEC and phase variations following the arrivals of HSS/CIRs [5] are investigated in the context of ionospheric convection and equivalent ionospheric currents derived from&amp;#160; a ground magnetometer network using the spherical elementary current system method [6,7].&lt;/p&gt;&lt;p&gt;The Joule heating and Lorentz forcing in the high-latitude lower thermosphere have long been recognized as sources of internal atmospheric gravity waves (AGWs) [2] that propagate both upward and downward, thus providing vertical coupling between atmospheric layers. In the ionosphere, they are observed as traveling ionospheric disturbances (TIDs) using various techniques, e.g., de-trended GPS TEC maps [8].&lt;/p&gt;&lt;p&gt;In this paper we examine the influence on the Earth&amp;#8217;s ionosphere and atmosphere of a long-lasting HSS/CIRs from recurrent coronal holes at the end of solar cycles 23 and 24. The solar wind MIA coupling, as represented by the coupling function [9], was strongly increased during the arrivals of these HSS/CIRs.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;[1] Kikuchi, T. and K. K. Hashimoto, Geosci. Lett. , 3:4, 2016.&lt;/p&gt;&lt;p&gt;[2] Hocke, K. and K. Schlegel, Ann. Geophys., 14, 917&amp;#8211;940, 1996.&lt;/p&gt;&lt;p&gt;[3] Prikryl, P., et al., J. Geophys. Res. Space Physics, 121, 10448&amp;#8211;10465, 2016.&lt;/p&gt;&lt;p&gt;[4] Ghoddousi-Fard et al., Advances in Space Research, 52(8), 1397-1405, 2013.&lt;/p&gt;&lt;p&gt;[5] Prikryl et al. Earth, Planets and Space, 66:62, 2014.&lt;/p&gt;&lt;p&gt;[6] Amm O., and A. Viljanen, Earth Planets Space, 51, 431&amp;#8211;440, 1999.&lt;/p&gt;&lt;p&gt;[7] Weygand J.M., et al., J. Geophys. Res., 116, A03305, 2011.&lt;/p&gt;&lt;p&gt;[8] Tsugawa T., et al., Geophys. Res. Lett., 34, L22101, 2007.&lt;/p&gt;&lt;p&gt;[9] Newell P. T., et al., J. Geophys. Res., 112, A01206, 2007.&lt;/p&gt;


2020 ◽  
Author(s):  
Lidia Nikitina ◽  
Paul Prikryl ◽  
Shun-Rong Zhang

&lt;p&gt;Convective bursts have been linked to intensification of tropical cyclones [1]. We consider a possibility of convective bursts being triggered by aurorally-generated atmospheric gravity waves (AGWs) that may play a role in the intensification process of tropical cyclones [2]. A two-dimensional barotropic approximation is used to obtain asymptotic solutions representing propagation of vortex waves [3] launched in tropical cyclones by quasi-periodic convective bursts. The absorption of vortex waves by the mean flow and formation of the secondary eyewall lead to a process of an eyewall replacement cycle that is known to cause changes in tropical cyclone intensity [4]. Rapid intensification of hurricanes and typhoons from 1995-2018 is examined in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system. In support of recently published results [2] it is shown that rapid intensification of TCs tend to follow arrival of high-speed solar wind when the MIA coupling is strongest. The coupling generates internal gravity waves in the atmosphere that propagate from the high-latitude lower thermosphere both upward and downward. In the lower atmosphere, they can be ducted [5] and reach tropical troposphere. Despite their significantly reduced amplitude, but subject to amplification upon over-reflection in the upper troposphere, these AGWs can trigger/release moist instabilities leading to convection and latent heat release. A possibility of initiation of convective bursts by aurorally generated AGWs is investigated. Cases of rapid intensification of recent tropical cyclones provide further evidence to support the published results [2].&lt;/p&gt;&lt;p&gt;References&lt;/p&gt;&lt;p&gt;[1] Steranka et al., Mon. Weather Rev., 114, 1539-1546, 1986.&lt;/p&gt;&lt;p&gt;[2] Prikryl et al., J. Atmos. Sol.-Terr. Phys., 2019.&lt;/p&gt;&lt;p&gt;[3] Nikitina L.V., Campbell L.J., Stud. Appl. Math., 135, 377&amp;#8211;446, 2015.&lt;/p&gt;&lt;p&gt;[4] Willoughby H.E., et al., J. Atmos. Sci., 39, 395&amp;#8211;411, 1982.&lt;/p&gt;&lt;p&gt;[5] Mayr H.G., et al., J. Geophys. Res., 89, 10929&amp;#8211;10959, 1984.&lt;/p&gt;


2007 ◽  
Vol 7 (5) ◽  
pp. 625-628 ◽  
Author(s):  
A. Rozhnoi ◽  
M. Solovieva ◽  
O. Molchanov ◽  
P.-F. Biagi ◽  
M. Hayakawa

Abstract. We analyze variations of the LF subionospheric signal amplitude and phase from JJY transmitter in Japan (F=40 kHz) received in Petropavlovsk-Kamchatsky station during seismically quiet and active periods including also periods of magnetic storms. After 20 s averaging, the frequency range of the analysis is 0.28–15 mHz that corresponds to the period range from 1 to 60 min. Changes in spectra of the LF signal perturbations are found several days before and after three large earthquakes, which happened in November 2004 (M=7.1), August 2005 (M=7.2) and November 2006 (M=8.2) inside the Fresnel zone of the Japan-Kamchatka wavepath. Comparing the perturbed and background spectra we have found the evident increase in spectral range 10–25 min that is in the compliance with theoretical estimations on lithosphere-ionosphere coupling by the Atmospheric Gravity Waves (T>6 min). Similar changes are not found for the periods of magnetic storms.


1997 ◽  
Vol 15 (8) ◽  
pp. 1048-1056 ◽  
Author(s):  
R. L. Balthazor ◽  
R. J. Moffett

Abstract. A global coupled thermosphere-ionosphere-plasmasphere model is used to simulate a family of large-scale imperfectly ducted atmospheric gravity waves (AGWs) and associated travelling ionospheric disturbances (TIDs) originating at conjugate magnetic latitudes in the north and south auroral zones and subsequently propagating meridionally to equatorial latitudes. A 'fast' dominant mode and two slower modes are identified. We find that, at the magnetic equator, all the clearly identified modes of AGW interfere constructively and pass through to the opposite hemisphere with unchanged velocity. At F-region altitudes the 'fast' AGW has the largest amplitude, and when northward propagating and southward propagating modes interfere at the equator, the TID (as parameterised by the fractional change in the electron density at the F2 peak) increases in magnitude at the equator. The amplitude of the TID at the magnetic equator is increased compared to mid-latitudes in both upper and lower F-regions with a larger increase in the upper F-region. The ionospheric disturbance at the equator persists in the upper F-region for about 1 hour and in the lower F-region for 2.5 hours after the AGWs first interfere, and it is suggested that this is due to enhancements of the TID by slower AGW modes arriving later at the magnetic equator. The complex effects of the interplays of the TIDs generated in the equatorial plasmasphere are analysed by examining neutral and ion winds predicted by the model, and are demonstrated to be consequences of the forcing of the plasmasphere along the magnetic field lines by the neutral air pressure wave.


Nature ◽  
1973 ◽  
Vol 246 (5433) ◽  
pp. 412-413 ◽  
Author(s):  
J. E. BECKMAN ◽  
J. I. CLUCAS

Sign in / Sign up

Export Citation Format

Share Document