scholarly journals The mirror mode: a “superconducting” space plasma analogue

2018 ◽  
Vol 36 (4) ◽  
pp. 1015-1026 ◽  
Author(s):  
Rudolf A. Treumann ◽  
Wolfgang Baumjohann

Abstract. We examine the physics of the magnetic mirror mode in its final state of saturation, the thermodynamic equilibrium, to demonstrate that the mirror mode is the analogue of a superconducting effect in a classical anisotropic-pressure space plasma. Two different spatial scales are identified which control the behaviour of its evolution. These are the ion inertial scale λim(τ) based on the excess density Nm(τ) generated in the mirror mode, and the Debye scale λD(τ). The Debye length plays the role of the correlation length in superconductivity. Their dependence on the temperature ratio τ=T‖/T⟂<1 is given, with T⟂ the reference temperature at the critical magnetic field. The mirror-mode equilibrium structure under saturation is determined by the Landau–Ginzburg ratio κD=λim/λD, or κρ=λim/ρ, depending on whether the Debye length or the thermal-ion gyroradius ρ – or possibly also an undefined turbulent correlation length ℓturb – serve as correlation lengths. Since in all space plasmas κD≫1, plasmas with λD as the relevant correlation length always behave like type II superconductors, naturally giving rise to chains of local depletions of the magnetic field of the kind observed in the mirror mode. In this way they would provide the plasma with a short-scale magnetic bubble texture. The problem becomes more subtle when ρ is taken as correlation length. In this case the evolution of mirror modes is more restricted. Their existence as chains or trains of larger-scale mirror bubbles implies that another threshold, VA>υ⟂th, is exceeded. Finally, in case the correlation length ℓturb instead results from low-frequency magnetic/magnetohydrodynamic turbulence, the observation of mirror bubbles and the measurement of their spatial scales sets an upper limit on the turbulent correlation length. This might be important in the study of magnetic turbulence in plasmas.

2018 ◽  
Author(s):  
Rudolf A. Treumann ◽  
Wolfgang Baumjohann

Abstract. We re-examine the physics of the magnetic mirror mode in its final state of saturation, the thermodynamic equilibrium, to demonstrate that the mirror mode is the analogue of a superconducting effect in a classical anisotropic-pressure space plasma. Two different spatial scales are identified which control the behaviour of its evolution. These are the ion inertial scale λim(τ) based on the excess density Nm(τ) generated in the mirror mode, and the Debye scale λD(τ). The Debye length plays the role of the correlation length in superconductivity. Their dependence on the temperature ratio τ = T‖ / T⊥  ν⊥th, is exceeded.


2019 ◽  
Vol 37 (5) ◽  
pp. 877-889
Author(s):  
Anatoli A. Petrukovich ◽  
Olga M. Chugunova ◽  
Pavel I. Shustov

Abstract. Observations of Earth's bow shock during high-β (ratio of thermal to magnetic pressure) solar wind streams are rare. However, such shocks are ubiquitous in astrophysical plasmas. Typical solar wind parameters related to high β (here β>10) are as follows: low speed, high density, and a very low interplanetary magnetic field of 1–2 nT. These conditions are usually quite transient and need to be verified immediately upstream of the observed shock crossings. In this report, three characteristic crossings by the Cluster project (from the 22 found) are studied using multipoint analysis, allowing us to determine spatial scales. The main magnetic field and density spatial scale of about a couple of hundred of kilometers generally corresponds to the increased proton convective gyroradius. Observed magnetic variations are different from those for supercritical shocks, with β∼1. Dominant magnetic variations in the shock transition have amplitudes much larger than the background field and have a frequency of ∼ 0.3–0.5 Hz (in some events – 1–2 Hz). The wave polarization has no stable phase and is closer to linear, which complicates the determination of the wave propagation direction. Spatial scales (wavelengths) of variations are within several tens to a couple of hundred of kilometers.


2005 ◽  
Vol 23 (10) ◽  
pp. 3339-3349 ◽  
Author(s):  
S. Schäfer ◽  
K.-H. Glassmeier ◽  
Y. Narita ◽  
K. H. Fornaçon ◽  
I. Dandouras ◽  
...  

Abstract. We present the results of a statistical analysis of low-frequency fluctuations in the high latitude regions of the dayside magnetosheath using CLUSTER as a wave telescope. Magnetic field observations are used to determine wave propagation directions and wave numbers for selected frequencies. Using observations of the plasma flow velocity we correct for the Doppler shift, in order to calculate frequencies and phase velocities in the plasma rest frame. This provides us with the possibility to perform a statistical dispersion analysis and to investigate various wave properties, such as the phase velocity and the propagation angle between k and B. The analysis of dispersion distributions and Friedrichs diagrams results in the identification of different wave populations. We find a multiplicity of standing structures (mirror modes) convected with the plasma flow and a large number of Alfvénic waves. The results confirm previous magnetosheath wave studies, such as ISSE or AMPTE spacecraft observations, but we also find a small number of mirror mode-like waves that have propagation speeds up to the local Alfvén velocity, quasi-perpendicular to the magnetic field.


2009 ◽  
Vol 75 (3) ◽  
pp. 395-406 ◽  
Author(s):  
CONSTANTINE L. XAPLANTERIS

AbstractIn a suitable experimental device, laboratory plasma is produced with conditions and parameters analogous to magnetospheric plasma; we light a rare plasma in a semi-machine using rf-frequency discharge. Three ranges of low-frequency instabilities appear, one of which is identified as drift, caused by electron–neutral collisions. A full theoretical elaboration adapted to production conditions and geometrical symmetry is carried out; one solution of the dispersion relation is sufficient justification for the existence of the instability. The mathematical analysis also has the ambition to give interpretation for other low-frequency waves. Here we make a sound identification of the instability type as drift resistive due to electron–neutral collisions by an investigation of the growth rate. An agreement between experimental results and the theoretical model is obtained. As in the magnetosphere, an external magnetic field restrains the plasma.


2014 ◽  
Vol 21 (1) ◽  
pp. 143-148 ◽  
Author(s):  
R. A. Treumann ◽  
W. Baumjohann

Abstract. Excitation of Weibel magnetic fields in an initially non-magnetized though anisotropic plasma may trigger other low-frequency instabilities fed by pressure anisotropy. It is shown that under Weibel-like stable conditions the Weibel-like thermal fluctuation magnetic field allows for restricted Firehose-mode growth. In addition, low-frequency Whistlers can also propagate in the plasma under certain anisotropic conditions. When the Weibel-like mode becomes unstable, Firehose instability ceases but Mirror modes take over. This will cause bubble structures in the Weibel-like field in addition to filamentation.


Sign in / Sign up

Export Citation Format

Share Document