scholarly journals Extreme rainfall events can alter inter-annual biomass responses to water and N enrichment

2013 ◽  
Vol 10 (12) ◽  
pp. 8129-8138 ◽  
Author(s):  
D. L. Kong ◽  
X. T. Lü ◽  
L. L. Jiang ◽  
H. F. Wu ◽  
Y. Miao ◽  
...  

Abstract. Water availability has profound effects on plant growth and productivity in temperate and semiarid grasslands. However, it remains unclear how variation of inter-annual precipitation by extreme rainfall events will alter the aboveground and belowground responses of plants, and how these responses may be contingent on N availability. In this study, we examined the interactive effects of inter-annual precipitation variation and N addition on aboveground and live fine root biomass of a semiarid grassland in northern China for two consecutive years (2007 and 2008). Inter-annual variation in precipitation resulting mainly from the occurrence of extreme rainfall events in 2008 significantly affected above- and belowground plant biomass responses to water addition. In addition, variation of inter-annual precipitation by this extreme rainfall event suppressed plant responses to nitrogen addition and reduced the interaction effects between water and nitrogen addition. These effects of inter-annual precipitation fluctuation could be attributed to the negative influence of the extreme rainfall event on soil N and water availability, ultimately reducing plant rainfall use efficiency and nitrogen use efficiency. In conclusion, our results suggest ecosystem responses to water and N enrichment could be altered by inter-annual variation of precipitation regime caused by the naturally occurring extreme rainfall events.

2013 ◽  
Vol 10 (8) ◽  
pp. 13427-13454 ◽  
Author(s):  
D. L. Kong ◽  
X. T. Lü ◽  
L. L. Jiang ◽  
H. F. Wu ◽  
Y. Miao ◽  
...  

Abstract. Water availability has profound effects on plant growth and productivity in temperate and semi-arid grasslands. However, it remains unclear how variation of inter-annual precipitation by extreme rainfall events will alter the aboveground and belowground responses of plants, and how these responses may be contingent on N availability. In this study, we examined the interactive effects of inter-annual precipitation variation and N addition on aboveground and live fine root biomass of a semi-arid grassland in northern China for two consecutive years (2007 and 2008). Inter-annual variation in precipitation resulting mainly from the occurrence of extreme rainfall events in 2008 significantly affected above- and belowground plant biomass responses to water addition. In addition, variation of inter-annual precipitation by this extreme rainfall event suppressed plant responses to nitrogen addition and reduced the interaction effects between water and nitrogen addition. These effects of inter-annual precipitation fluctuation could be attributed to the negative influence of the extreme rainfall event on soil N and water availability, ultimately reducing plant rainfall use efficiency and nitrogen use efficiency. In conclusion, our results suggest ecosystem responses to water and N enrichment could be altered by inter-annual variation of precipitation regime caused by the naturally occurring extreme rainfall events.


2011 ◽  
Vol 24 (7) ◽  
pp. 1913-1921 ◽  
Author(s):  
Mateus da Silva Teixeira ◽  
Prakki Satyamurty

Abstract A new approach to define heavy and extreme rainfall events based on cluster analysis and area-average rainfall series is presented. The annual frequency of the heavy and extreme rainfall events is obtained for the southeastern and southern Brazil regions. In the 1960–2004 period, 510 (98) and 466 (77) heavy (extreme) rainfall events are identified in the two regions. Monthly distributions of the events closely follow the monthly climatological rainfall in the two regions. In both regions, annual heavy and extreme rainfall event frequencies present increasing trends in the 45-yr period. However, only in southern Brazil is the trend statistically significant. Although longer time series are necessary to ensure the existence of long-term trends, the positive trends are somewhat alarming since they indicate that climate changes, in terms of rainfall regimes, are possibly under way in Brazil.


Author(s):  
J. R. Santillan ◽  
A. M. Amora ◽  
M. Makinano-Santillan ◽  
J. T. Marqueso ◽  
L. C. Cutamora ◽  
...  

In this paper, we present a combined geospatial and two dimensional (2D) flood modeling approach to assess the impacts of flooding due to extreme rainfall events. We developed and implemented this approach to the Tago River Basin in the province of Surigao del Sur in Mindanao, Philippines, an area which suffered great damage due to flooding caused by Tropical Storms Lingling and Jangmi in the year 2014. The geospatial component of the approach involves extraction of several layers of information such as detailed topography/terrain, man-made features (buildings, roads, bridges) from 1-m spatial resolution LiDAR Digital Surface and Terrain Models (DTM/DSMs), and recent land-cover from Landsat 7 ETM+ and Landsat 8 OLI images. We then used these layers as inputs in developing a Hydrologic Engineering Center Hydrologic Modeling System (HEC HMS)-based hydrologic model, and a hydraulic model based on the 2D module of the latest version of HEC River Analysis System (RAS) to dynamically simulate and map the depth and extent of flooding due to extreme rainfall events. The extreme rainfall events used in the simulation represent 6 hypothetical rainfall events with return periods of 2, 5, 10, 25, 50, and 100 years. For each event, maximum flood depth maps were generated from the simulations, and these maps were further transformed into hazard maps by categorizing the flood depth into low, medium and high hazard levels. Using both the flood hazard maps and the layers of information extracted from remotely-sensed datasets in spatial overlay analysis, we were then able to estimate and assess the impacts of these flooding events to buildings, roads, bridges and landcover. Results of the assessments revealed increase in number of buildings, roads and bridges; and increase in areas of land-cover exposed to various flood hazards as rainfall events become more extreme. The wealth of information generated from the flood impact assessment using the approach can be very useful to the local government units and the concerned communities within Tago River Basin as an aid in determining in an advance manner all those infrastructures (buildings, roads and bridges) and land-cover that can be affected by different extreme rainfall event flood scenarios.


2019 ◽  
Vol 5 (11) ◽  
pp. 2309-2317 ◽  
Author(s):  
Murphy Ponce Mohammed

The objective of the study is to create a flood hazard model of Tarlac River and to calibrate the model based on data gathered from the Philippine Atmospheric Geophysical and Astronomical Services Administration. The study employed analytical method wherein the 1D flood modeling was utilized. GIS, DEM data, rainfall data, river analysis system, HEC-GeoRAS, hydrologic modeling system, and HEC-GeoHMS were utilized. The different flood models revealed that Tarlac River is not expected to be overtopped by flood water as regards the different extreme rainfall events considered in the present study. The RAS model simulation was based on the concept that there is no base flow observed within the river reach before the occurrence of any extreme rainfall event. Henceforth, there is still no 100 percent assurance that the river reach will not be overtopped with the occurrence of initial base flow in combination with the occurrence of higher extreme rainfall events. Further studies or investigations should be delved into such combination of events. Possible levee breach of the Tarlac River as well as the possible incorporation of flood mitigating interventions in future modeling scenarios can be likewise considered.


2013 ◽  
Vol 13 (11) ◽  
pp. 2911-2926 ◽  
Author(s):  
J. Liu ◽  
S.-Y. Wang

Abstract. The aim of this study is to characterize the extreme rainfall event on 21–22 July 2012 in Beijing, and its impact on human vulnerability. Based on the available meteorological and rainfall data from Beijing meteorological stations and Surface Weather Observation Stations, the study draws hourly rainfall maps to simulate the rainfall amount and spatial distribution. Using these maps, this paper provides a quantitative analysis of the impact of the temporal and spatial characteristics of rainfall on the vulnerability of three population groups, according to age, gender and total number of victims. The results of three linear regression models indicate the different effects of extreme rainfall parameters on victims with different characteristics. The analysis of victim data in this extreme rainfall event represents the distribution and characteristics of victims in the eight affected districts, and concludes that the "vulnerable group" are males and adults in this extreme rainfall event. This paper is an initial effort to analyze the impact of an extreme rainfall event on the vulnerability of populations with different characteristics quantitatively, which can be used by stakeholders to prioritize the extreme rainfall event impact issues, and develop contingency plans to address and prevent the human and structural damages caused by the extreme rainfall events.


Author(s):  
J. R. Santillan ◽  
A. M. Amora ◽  
M. Makinano-Santillan ◽  
J. T. Marqueso ◽  
L. C. Cutamora ◽  
...  

In this paper, we present a combined geospatial and two dimensional (2D) flood modeling approach to assess the impacts of flooding due to extreme rainfall events. We developed and implemented this approach to the Tago River Basin in the province of Surigao del Sur in Mindanao, Philippines, an area which suffered great damage due to flooding caused by Tropical Storms Lingling and Jangmi in the year 2014. The geospatial component of the approach involves extraction of several layers of information such as detailed topography/terrain, man-made features (buildings, roads, bridges) from 1-m spatial resolution LiDAR Digital Surface and Terrain Models (DTM/DSMs), and recent land-cover from Landsat 7 ETM+ and Landsat 8 OLI images. We then used these layers as inputs in developing a Hydrologic Engineering Center Hydrologic Modeling System (HEC HMS)-based hydrologic model, and a hydraulic model based on the 2D module of the latest version of HEC River Analysis System (RAS) to dynamically simulate and map the depth and extent of flooding due to extreme rainfall events. The extreme rainfall events used in the simulation represent 6 hypothetical rainfall events with return periods of 2, 5, 10, 25, 50, and 100 years. For each event, maximum flood depth maps were generated from the simulations, and these maps were further transformed into hazard maps by categorizing the flood depth into low, medium and high hazard levels. Using both the flood hazard maps and the layers of information extracted from remotely-sensed datasets in spatial overlay analysis, we were then able to estimate and assess the impacts of these flooding events to buildings, roads, bridges and landcover. Results of the assessments revealed increase in number of buildings, roads and bridges; and increase in areas of land-cover exposed to various flood hazards as rainfall events become more extreme. The wealth of information generated from the flood impact assessment using the approach can be very useful to the local government units and the concerned communities within Tago River Basin as an aid in determining in an advance manner all those infrastructures (buildings, roads and bridges) and land-cover that can be affected by different extreme rainfall event flood scenarios.


2014 ◽  
Vol 11 (5) ◽  
pp. 6877-6908 ◽  
Author(s):  
B.-J. Jung ◽  
J.-K. Lee ◽  
H. Kim ◽  
J.-H. Park

Abstract. Despite recent debates on erosion-enhanced sinks of CO2 and contrasting findings on the biodegradation of recalcitrant organic materials in large rivers, little attention has been paid to the export and transformations of particulate organic carbon (POC) and dissolved organic C (DOC) in mountainous headwater watersheds under monsoon climates. To comparatively evaluate the significance of heavy monsoon rainfalls for the magnitude and environmental implications of storm-enhanced export of POC and DOC, the relationships between storm magnitude and C export were examined in a mountainous, forested headwater stream in the Haean Basin, South Korea, during 50 storm events over the 4 year monitoring period. We also compared biodegradation and disinfection byproduct (DBP) formation potentials of the DOC and POC exported during an extreme rainfall event. Event mean concentrations and export of POC increased nonlinearly above thresholds of precipitation and discharge, significantly exceeding the increases of DOC. The export of POC during a few storm events with a total rainfall above 200 mm per event exceeded the annual organic C export during dry years. During the large storm event (209 mm), concentrations of total trihalomethanes formed by POC-derived dissolved components changed synchronously with POC concentrations, exhibiting lower levels than those formed by DOC. During a 30 day incubation at 25 °C, both DOC and POC exported during peak flow initially exhibited rapid biodegradation of labile components, whereas POC-derived materials increased continuously not only DOC concentrations, but also fulvic- and humic-like fluorescent components. These results highlight the significance of extreme rainfall events as "hot moments" for POC export and also suggest that storm pulses of POC can provide potential sources of labile DOC components that can rapidly biodegrade and form DBPs in headwater streams, contrasting with other studies assuming mountainous rivers as a passive conduit of organic C.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2167 ◽  
Author(s):  
Bezak ◽  
Mikoš

High-frequency rainfall data is needed in different practical hydrologic applications, such as the construction of the intensity-duration-frequency curves (IDF). This paper presents an investigation of trends (station-wise and regional) for several rainfall durations that were constructed based on the 5 min rainfall data. Moreover, changes in IDF results for two 22-year sub-samples were also analyzed. Additionally, changes in extreme events clustering at the regional scale were also analyzed. Ten rainfall stations (44 years of data 1975–2018) located in Slovenia (central EU, approx. 20,000 km2) were used in this study. Results indicate that no clear pattern in the detected trends can be found based on the analyzed stations. However, all the statistically significant trends at the significance level of 0.05 for the 5 min rainfall data were negative. Moreover, regional trends for this duration were also statistically significant. The changes in the design rainfall events between two equal sub-samples (1975–1996, 1997–2018) were between −30% and 60%. The investigation of changes in extreme rainfall event clustering indicated that extreme 5, 30, and 60 min events could more frequently occur a few days earlier in spring or summer compared to the past period. On the other hand, longer duration events (i.e., 360 and 720 min) tend to more frequently occur a few days later in autumn compared to the past. In most cases, changes are not statistically significant.


2019 ◽  
Vol 1 (1) ◽  
pp. 33
Author(s):  
M Welly

Many people in Indonesia calculate design rainfall before calculating the design flooddischarge. The design rainfall with a certain return period will eventually be convertedinto a design flood discharge by combining it with the characteristics of the watershed.However, the lack of a network of rainfall recording stations makes many areas that arenot hydrologically measured (ungauged basin), so it is quite difficult to know thecharacteristics of rain in the area concerned. This study aims to analyze thecharacteristics of design rainfall in Lampung Province. The focus of the analysis is toinvestigate whether geographical factors influence the design rainfall that occurs in theparticular area. The data used in this study is daily rainfall data from 15 rainfallrecording stations spread in Lampung Province. The method of frequency analysis usedin this study is the Gumbel method. The research shows that the geographical location ofan area does not have significant effect on extreme rainfall events. The effect of risingearth temperatures due to natural exploitation by humans tends to be stronger as a causeof extreme events such as extreme rainfall.Keywords: Influence, geographical, factors, extreme, rainfall.


Sign in / Sign up

Export Citation Format

Share Document