scholarly journals ASSESSING THE IMPACTS OF FLOODING CAUSED BY EXTREME RAINFALL EVENTS THROUGH A COMBINED GEOSPATIAL AND NUMERICAL MODELING APPROACH

Author(s):  
J. R. Santillan ◽  
A. M. Amora ◽  
M. Makinano-Santillan ◽  
J. T. Marqueso ◽  
L. C. Cutamora ◽  
...  

In this paper, we present a combined geospatial and two dimensional (2D) flood modeling approach to assess the impacts of flooding due to extreme rainfall events. We developed and implemented this approach to the Tago River Basin in the province of Surigao del Sur in Mindanao, Philippines, an area which suffered great damage due to flooding caused by Tropical Storms Lingling and Jangmi in the year 2014. The geospatial component of the approach involves extraction of several layers of information such as detailed topography/terrain, man-made features (buildings, roads, bridges) from 1-m spatial resolution LiDAR Digital Surface and Terrain Models (DTM/DSMs), and recent land-cover from Landsat 7 ETM+ and Landsat 8 OLI images. We then used these layers as inputs in developing a Hydrologic Engineering Center Hydrologic Modeling System (HEC HMS)-based hydrologic model, and a hydraulic model based on the 2D module of the latest version of HEC River Analysis System (RAS) to dynamically simulate and map the depth and extent of flooding due to extreme rainfall events. The extreme rainfall events used in the simulation represent 6 hypothetical rainfall events with return periods of 2, 5, 10, 25, 50, and 100 years. For each event, maximum flood depth maps were generated from the simulations, and these maps were further transformed into hazard maps by categorizing the flood depth into low, medium and high hazard levels. Using both the flood hazard maps and the layers of information extracted from remotely-sensed datasets in spatial overlay analysis, we were then able to estimate and assess the impacts of these flooding events to buildings, roads, bridges and landcover. Results of the assessments revealed increase in number of buildings, roads and bridges; and increase in areas of land-cover exposed to various flood hazards as rainfall events become more extreme. The wealth of information generated from the flood impact assessment using the approach can be very useful to the local government units and the concerned communities within Tago River Basin as an aid in determining in an advance manner all those infrastructures (buildings, roads and bridges) and land-cover that can be affected by different extreme rainfall event flood scenarios.

Author(s):  
J. R. Santillan ◽  
A. M. Amora ◽  
M. Makinano-Santillan ◽  
J. T. Marqueso ◽  
L. C. Cutamora ◽  
...  

In this paper, we present a combined geospatial and two dimensional (2D) flood modeling approach to assess the impacts of flooding due to extreme rainfall events. We developed and implemented this approach to the Tago River Basin in the province of Surigao del Sur in Mindanao, Philippines, an area which suffered great damage due to flooding caused by Tropical Storms Lingling and Jangmi in the year 2014. The geospatial component of the approach involves extraction of several layers of information such as detailed topography/terrain, man-made features (buildings, roads, bridges) from 1-m spatial resolution LiDAR Digital Surface and Terrain Models (DTM/DSMs), and recent land-cover from Landsat 7 ETM+ and Landsat 8 OLI images. We then used these layers as inputs in developing a Hydrologic Engineering Center Hydrologic Modeling System (HEC HMS)-based hydrologic model, and a hydraulic model based on the 2D module of the latest version of HEC River Analysis System (RAS) to dynamically simulate and map the depth and extent of flooding due to extreme rainfall events. The extreme rainfall events used in the simulation represent 6 hypothetical rainfall events with return periods of 2, 5, 10, 25, 50, and 100 years. For each event, maximum flood depth maps were generated from the simulations, and these maps were further transformed into hazard maps by categorizing the flood depth into low, medium and high hazard levels. Using both the flood hazard maps and the layers of information extracted from remotely-sensed datasets in spatial overlay analysis, we were then able to estimate and assess the impacts of these flooding events to buildings, roads, bridges and landcover. Results of the assessments revealed increase in number of buildings, roads and bridges; and increase in areas of land-cover exposed to various flood hazards as rainfall events become more extreme. The wealth of information generated from the flood impact assessment using the approach can be very useful to the local government units and the concerned communities within Tago River Basin as an aid in determining in an advance manner all those infrastructures (buildings, roads and bridges) and land-cover that can be affected by different extreme rainfall event flood scenarios.


2011 ◽  
Vol 24 (7) ◽  
pp. 1913-1921 ◽  
Author(s):  
Mateus da Silva Teixeira ◽  
Prakki Satyamurty

Abstract A new approach to define heavy and extreme rainfall events based on cluster analysis and area-average rainfall series is presented. The annual frequency of the heavy and extreme rainfall events is obtained for the southeastern and southern Brazil regions. In the 1960–2004 period, 510 (98) and 466 (77) heavy (extreme) rainfall events are identified in the two regions. Monthly distributions of the events closely follow the monthly climatological rainfall in the two regions. In both regions, annual heavy and extreme rainfall event frequencies present increasing trends in the 45-yr period. However, only in southern Brazil is the trend statistically significant. Although longer time series are necessary to ensure the existence of long-term trends, the positive trends are somewhat alarming since they indicate that climate changes, in terms of rainfall regimes, are possibly under way in Brazil.


2020 ◽  
Vol 18 ◽  
pp. 100316
Author(s):  
Vinicius Alexandre Sikora de Souza ◽  
Daniel Medeiros Moreira ◽  
Otto Corrêa Rotunno Filho ◽  
Anderson Paulo Rudke

2019 ◽  
Vol 5 (11) ◽  
pp. 2309-2317 ◽  
Author(s):  
Murphy Ponce Mohammed

The objective of the study is to create a flood hazard model of Tarlac River and to calibrate the model based on data gathered from the Philippine Atmospheric Geophysical and Astronomical Services Administration. The study employed analytical method wherein the 1D flood modeling was utilized. GIS, DEM data, rainfall data, river analysis system, HEC-GeoRAS, hydrologic modeling system, and HEC-GeoHMS were utilized. The different flood models revealed that Tarlac River is not expected to be overtopped by flood water as regards the different extreme rainfall events considered in the present study. The RAS model simulation was based on the concept that there is no base flow observed within the river reach before the occurrence of any extreme rainfall event. Henceforth, there is still no 100 percent assurance that the river reach will not be overtopped with the occurrence of initial base flow in combination with the occurrence of higher extreme rainfall events. Further studies or investigations should be delved into such combination of events. Possible levee breach of the Tarlac River as well as the possible incorporation of flood mitigating interventions in future modeling scenarios can be likewise considered.


2013 ◽  
Vol 10 (8) ◽  
pp. 13427-13454 ◽  
Author(s):  
D. L. Kong ◽  
X. T. Lü ◽  
L. L. Jiang ◽  
H. F. Wu ◽  
Y. Miao ◽  
...  

Abstract. Water availability has profound effects on plant growth and productivity in temperate and semi-arid grasslands. However, it remains unclear how variation of inter-annual precipitation by extreme rainfall events will alter the aboveground and belowground responses of plants, and how these responses may be contingent on N availability. In this study, we examined the interactive effects of inter-annual precipitation variation and N addition on aboveground and live fine root biomass of a semi-arid grassland in northern China for two consecutive years (2007 and 2008). Inter-annual variation in precipitation resulting mainly from the occurrence of extreme rainfall events in 2008 significantly affected above- and belowground plant biomass responses to water addition. In addition, variation of inter-annual precipitation by this extreme rainfall event suppressed plant responses to nitrogen addition and reduced the interaction effects between water and nitrogen addition. These effects of inter-annual precipitation fluctuation could be attributed to the negative influence of the extreme rainfall event on soil N and water availability, ultimately reducing plant rainfall use efficiency and nitrogen use efficiency. In conclusion, our results suggest ecosystem responses to water and N enrichment could be altered by inter-annual variation of precipitation regime caused by the naturally occurring extreme rainfall events.


2013 ◽  
Vol 10 (12) ◽  
pp. 8129-8138 ◽  
Author(s):  
D. L. Kong ◽  
X. T. Lü ◽  
L. L. Jiang ◽  
H. F. Wu ◽  
Y. Miao ◽  
...  

Abstract. Water availability has profound effects on plant growth and productivity in temperate and semiarid grasslands. However, it remains unclear how variation of inter-annual precipitation by extreme rainfall events will alter the aboveground and belowground responses of plants, and how these responses may be contingent on N availability. In this study, we examined the interactive effects of inter-annual precipitation variation and N addition on aboveground and live fine root biomass of a semiarid grassland in northern China for two consecutive years (2007 and 2008). Inter-annual variation in precipitation resulting mainly from the occurrence of extreme rainfall events in 2008 significantly affected above- and belowground plant biomass responses to water addition. In addition, variation of inter-annual precipitation by this extreme rainfall event suppressed plant responses to nitrogen addition and reduced the interaction effects between water and nitrogen addition. These effects of inter-annual precipitation fluctuation could be attributed to the negative influence of the extreme rainfall event on soil N and water availability, ultimately reducing plant rainfall use efficiency and nitrogen use efficiency. In conclusion, our results suggest ecosystem responses to water and N enrichment could be altered by inter-annual variation of precipitation regime caused by the naturally occurring extreme rainfall events.


Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 71 ◽  
Author(s):  
Douglas K. Miller ◽  
Chelcy Ford Miniat ◽  
Richard M. Wooten ◽  
Ana P. Barros

Previous examination of rain gauge observations over a five-year period at high elevations within a river basin of the southern Appalachian Mountains showed that half of the extreme (upper 2.5%) rainfall events were associated with an atmospheric river (AR). Of these extreme events having an AR association, over 73% were linked to a societal hazard at downstream locations in eastern Tennessee and western North Carolina. Our analysis in this study was expanded to investigate AR effects in the southern Appalachian Mountains on two river basins, located 60 km apart, and examine their influence on extreme rainfall, periods of elevated precipitation and landslide events over two time periods, the ‘recent’ and ‘distant’ past. Results showed that slightly more than half of the extreme rainfall events were directly attributable to an AR in both river basins. However, there was disagreement on individual ARs influencing extreme rainfall events in each basin, seemingly a reflection of its proximity to the Blue Ridge Escarpment and the localized terrain lining the river basin boundary. Days having at least one landslide occurring in western North Carolina were found to be correlated with long periods of elevated precipitation, which often also corresponded to the influence of ARs and extreme rainfall events.


Sign in / Sign up

Export Citation Format

Share Document