scholarly journals Trace metal distribution in pristine permafrost-affected soils of the Lena River delta and its hinterland, northern Siberia, Russia

2014 ◽  
Vol 11 (1) ◽  
pp. 1-15 ◽  
Author(s):  
I. Antcibor ◽  
A. Eschenbach ◽  
S. Zubrzycki ◽  
L. Kutzbach ◽  
D. Bolshiyanov ◽  
...  

Abstract. Soils are an important compartment of ecosystems and have the ability to buffer and immobilize substances of natural and anthropogenic origin to prevent their movement to other environment compartments. Predicted climatic changes together with other anthropogenic influences on Arctic terrestrial environments may affect biogeochemical processes enhancing leaching and migration of trace elements in permafrost-affected soils. This is especially important since Arctic ecosystems are considered to be highly sensitive to climatic changes as well as to chemical contamination. This study characterises background levels of trace metals in permafrost-affected soils of the Lena River delta and its hinterland in northern Siberia (73.5–69.5° N), representing a remote region far from evident anthropogenic trace metal sources. Investigations on the element content of iron (Fe), arsenic (As), manganese (Mn), zinc (Zn), nickel (Ni), copper (Cu), lead (Pb), cadmium (Cd), cobalt (Co), and mercury (Hg) in different soil types developed in different geological parent materials have been carried out. The highest median concentrations of Fe and Mn were observed in soils belonging to ice-rich permafrost sediments formed during the Pleistocene (ice-complex) while the highest median values of Ni, Pb and Zn were found in soils of both the ice-complex and the Holocene estuarine terrace of the Lena River delta region, as well as in the southernmost study unit of the hinterland area. Detailed observations of trace metal distribution on the micro scale showed that organic matter content, soil texture and iron-oxide contents influenced by cryogenic processes, temperature, and hydrological regimes are the most important factors determining the metal abundance in permafrost-affected soils. The observed range of trace element background concentrations was similar to trace metal levels reported for other pristine northern areas.

2013 ◽  
Vol 10 (2) ◽  
pp. 2205-2244 ◽  
Author(s):  
I. Antcibor ◽  
S. Zubrzycki ◽  
A. Eschenbach ◽  
L. Kutzbach ◽  
D. Bol'shiyanov ◽  
...  

Abstract. Soils are an important compartment of ecosystems and have the ability to immobilize chemicals preventing their movement to other environment compartments. Predicted climatic changes together with other anthropogenic influences on Arctic terrestrial environments may affect biogeochemical processes enhancing leaching and migration of trace elements in permafrost-affected soils. This is especially important since the Arctic ecosystems are considered to be very sensitive to climatic changes as well as to chemical contamination. This study characterizes background levels of trace metals in permafrost-affected soils of the Lena River Delta and its hinterland in northern Siberia (73.5° N–69.5° N) representing a remote region far from evident anthropogenic trace metal sources. Investigations on total element contents of iron (Fe), arsenic (As), manganese (Mn), zinc (Zn), nickel (Ni), copper (Cu), lead (Pb), cadmium (Cd), cobalt (Co) and mercury (Hg) in different soil types developed in different geological parent materials have been carried out. The highest concentrations of the majority of the measured elements were observed in soils belonging to ice-rich permafrost sediments formed during the Pleistocene (ice-complex) in the Lena River Delta region. Correlation analyses of trace metal concentrations and soil chemical and physical properties at a Holocene estuarine terrace and two modern floodplain levels in the southern-central Lena River Delta (Samoylov Island) showed that the main factors controlling the trace metal distribution in these soils are organic matter content, soil texture and contents of iron and manganese-oxides. Principal Component Analysis (PCA) revealed that soil oxides play a significant role in trace metal distribution in both top and bottom horizons. Occurrence of organic matter contributes to Cd binding in top soils and Cu binding in bottom horizons. Observed ranges of the background concentrations of the majority of trace elements were similar to background levels reported for other pristine arctic areas and did not exceed mean global background concentrations examined for the continental crust as well as for the world's soils.


2007 ◽  
Vol 4 (3) ◽  
pp. 1953-2005 ◽  
Author(s):  
L. Kutzbach ◽  
C. Wille ◽  
E.-M. Pfeiffer

Abstract. The exchange fluxes of carbon dioxide between wet arctic polygonal tundra and the atmosphere were investigated by the micrometeorological eddy covariance method. The investigation site was situated in the centre of the Lena River Delta in Northern Siberia (72°22' N, 126°30' E). The study region is characterized by a polar and distinctly continental climate, very cold and ice-rich permafrost and its position at the interface between the Eurasian continent and the Arctic Ocean. The soils at the site are characterized by high organic matter content, low nutrient availability and pronounced water logging. The vegetation is dominated by sedges and mosses. The micrometeorological campaigns were performed during the periods July–October 2003 and May–July 2004 which included the period of snow and soil thaw as well as the beginning of soil refreeze. The main CO2 exchange processes, the gross photosynthesis and the ecosystem respiration, were found to be of a generally low intensity. The gross photosynthesis accumulated to –432 g m−2 over the photosynthetically active period (June–September). The contribution of mosses to the gross photosynthesis was estimated to be about 40%. The diurnal trend of the gross photosynthesis was mainly controlled by the incoming photosynthetically active radiation. During midday the photosynthetic apparatus of the canopy was frequently near saturation and represented the limiting factor on gross photosynthesis. The synoptic weather conditions strongly affected the exchange fluxes of CO2 by changes in cloudiness, precipitation and pronounced changes of air temperature. The ecosystem respiration accumulated to +327 g m−2 over the photosynthetically active period, which corresponds to 76% of the CO2 uptake by photosynthesis. However, the ecosystem respiration continued at substantial rates during autumn when photosynthesis had ceased and the soils were still largely unfrozen. The temporal variability of the ecosystem respiration during summer was best explained by an exponential function with surface temperature, and not soil temperature, as the independent variable. This was explained by the major role of the plant respiration within the CO2 balance of the tundra ecosystem. The wet polygonal tundra of the Lena River Delta was observed to be a substantial CO2 sink with an accumulated net ecosystem CO2 exchange of –119 g m−2 over the summer and an estimated annual net ecosystem CO2 exchange of –71 g m−2.


2013 ◽  
Vol 21 (1) ◽  
pp. 133-147 ◽  
Author(s):  
Manuel Helbig ◽  
Julia Boike ◽  
Moritz Langer ◽  
Peter Schreiber ◽  
Benjamin R. K. Runkle ◽  
...  

2007 ◽  
Vol 4 (5) ◽  
pp. 869-890 ◽  
Author(s):  
L. Kutzbach ◽  
C. Wille ◽  
E.-M. Pfeiffer

Abstract. The exchange fluxes of carbon dioxide between wet arctic polygonal tundra and the atmosphere were investigated by the micrometeorological eddy covariance method. The investigation site was situated in the centre of the Lena River Delta in Northern Siberia (72°22' N, 126°30' E). The study region is characterized by a polar and distinctly continental climate, very cold and ice-rich permafrost and its position at the interface between the Eurasian continent and the Arctic Ocean. The soils at the site are characterized by high organic matter content, low nutrient availability and pronounced water logging. The vegetation is dominated by sedges and mosses. The micrometeorological campaigns were performed during the periods July–October 2003 and May–July 2004 which included the period of snow and soil thaw as well as the beginning of soil refreeze. The main CO2 exchange processes, the gross photosynthesis and the ecosystem respiration, were found to be of a generally low intensity. The gross photosynthesis accumulated to −432 g m−2 over the photosynthetically active period (June–September). The contribution of mosses to the gross photosynthesis was estimated to be about 40%. The diurnal trend of the gross photosynthesis was mainly controlled by the incoming photosynthetically active radiation. During midday, the photosynthetic apparatus of the canopy was frequently near saturation and represented the limiting factor on gross photosynthesis. The synoptic weather conditions strongly affected the exchange fluxes of CO2 by changes in cloudiness, precipitation and pronounced changes of air temperature. The ecosystem respiration accumulated to +327 g m−2 over the photosynthetically active period, which corresponds to 76% of the CO2 uptake by photosynthesis. However, the ecosystem respiration continued at substantial rates during autumn when photosynthesis had ceased and the soils were still largely unfrozen. The temporal variability of the ecosystem respiration during summer was best explained by an exponential function with surface temperature, and not soil temperature, as the independent variable. This was explained by the major role of the plant respiration within the CO2 balance of the tundra ecosystem. The wet polygonal tundra of the Lena River Delta was observed to be a substantial CO2 sink with an accumulated net ecosystem CO2 exchange of −119 g m−2 over the summer and an estimated annual net ecosystem CO2 exchange of −71 g m−2.


Fuel ◽  
2008 ◽  
Vol 87 (10-11) ◽  
pp. 1887-1893 ◽  
Author(s):  
G. Jegadeesan ◽  
Souhail R. Al-Abed ◽  
Patricio Pinto

Sign in / Sign up

Export Citation Format

Share Document