background concentrations
Recently Published Documents


TOTAL DOCUMENTS

297
(FIVE YEARS 77)

H-INDEX

31
(FIVE YEARS 5)

2022 ◽  
Vol 22 (1) ◽  
pp. geochem2021-050
Author(s):  
Vincent Gallagher ◽  
Eric C. Grunsky ◽  
Mairéad M. Fitzsimons ◽  
Margaret A. Browne ◽  
Sophie Lilburn ◽  
...  

Regional stream water geochemistry acquired as part of the Tellus programme in Ireland has been analysed to assess its potential for application to environmental assessment and mineral exploration. Interpolated geochemical maps and multivariate statistical analysis, including principal component analysis and random forest classification, demonstrate broad geogenic control of stream water chemistry, with both bedrock and subsoil contributing to the patterns observed. Surface water regulations set Environmental Quality Standard values for individual Priority Substances and Specific Pollutants that may depend on background concentrations and/or water hardness. The high resolution of Tellus stream water data and their location on low-order streams have allowed estimation of background concentrations and water hardness in the survey area, with significant implications for water monitoring programmes. Anthropogenic inputs to stream water in the survey area come mainly from agricultural sources and Tellus data suggest few catchments are unaffected. Comparison of Tellus stream water geochemistry with stream sediment and topsoil geochemistry suggest that stream water geochemistry has strong potential for use in mineral exploration, with the same base metal and gold pathfinder anomalies apparent in all three data sets. Cluster analysis indicates that base metals in stream water are associated with organic matter but statistical analysis may be employed to distinguish mineralization-related signatures.Supplementary material: Comparison of cation/anion associations using Piper plots and principal component analysis is available at https://doi.org/10.6084/m9.figshare.c.5683094Thematic collection: This article is part of the Hydrochemistry related to exploration and environmental issues collection available at: https://www.lyellcollection.org/cc/hydrochemistry-related-to-exploration-and-environmental-issues


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7253
Author(s):  
Lisa Fischer ◽  
Bernadette Moser ◽  
Stephan Hann

Though not regulated in directives such as the Water Framework Directive of the European Union, the investigation of geogenic background concentrations of certain elements such as precious metals is of increasing interest, in particular for the early detection of a potential environmental pollution due to the increased use in various industrial and technological applications and in medicine. However, the precise and accurate quantification of precious metals in natural waters is challenging due to the complex matrices and the ultra-low concentrations in the (sub-) ng L−1 range. A methodological approach, based on matrix separation and pre-concentration on the strong anion exchange resin TEVA® Resin in an online mode directly coupled to ICP-SFMS, has been developed for the determination of Ag, Pt, Pd and Au in ground water. Membrane desolvation sample introduction was used to reduce oxide-based spectral interferences, which complicate the quantification of these metals with high accuracy. To overcome errors arising from matrix effects—in particular, the highly varying major ion composition of the investigated ground water samples—an isotope dilution analysis and quantification based on standard additions, respectively, were performed. The method allowed to process four samples per hour in a fully automated mode. With a sample volume of only 8 mL, enrichment factors of 6–9 could be achieved, yielding detection limits <1 ng L−1. Validation of the trueness was performed based on the reference samples. This method has been used for the analysis of the total concentrations of Ag, Pt, Pd and Au in highly mineralized ground waters collected from springs located in important geological fault zones of Austria’s territory. Concentrations ranges of 0.21–64.2 ng L−1 for Ag, 0.65–6.26 ng L−1 for Pd, 0.07–1.55 ng L−1 for Pt and 0.26–1.95 ng L−1 for Au were found.


2021 ◽  
Vol 14 (11) ◽  
pp. 7001-7019
Author(s):  
Lya Lugon ◽  
Jérémy Vigneron ◽  
Christophe Debert ◽  
Olivier Chrétien ◽  
Karine Sartelet

Abstract. Black carbon (BC) is a primary and inert pollutant often used as a traffic tracer. Even though its concentrations are generally low at the regional scale, BC presents very high concentrations in streets (at the local scale), potentially with important effects on human health and the environment. Modeling studies of BC concentrations usually underestimate BC concentrations due to uncertainties in both emissions and modeling. Both exhaust and non-exhaust traffic emissions present uncertainties, but the uncertainties with respect to non-exhaust emissions, such as tire, brake, and road wear as well as particle resuspension, are particularly high. In terms of modeling, street models do not always consider the two-way interactions between the local and regional scales. Using a two-way modeling approach, a street with high BC concentrations may influence urban background concentrations above the street, which can subsequently enhance the BC concentrations in the same street. This study uses the multiscale Street-in-Grid model (SinG) to simulate BC concentrations in a suburban street network in Paris, taking the two-way coupling between local and regional scales into account. The BC concentrations in streets proved to have an important influence on urban background concentrations. The two-way dynamic coupling leads to an increase in BC concentrations in large streets with high traffic emissions (with a maximal increase of about 48 %) as well as a decrease in narrow streets with low traffic emissions and low BC concentrations (with a maximal decrease of about 50 %). A new approach to estimate particle resuspension in streets is implemented, strictly respecting the mass balance on the street surface. The resuspension rate is calculated from the available deposited mass on the street surface, which is estimated based on particle deposition and wash-off parameterizations adapted to street-canyon geometries. The simulations show that particle resuspension presents a low contribution to BC concentrations, as the deposited mass is not significant enough to justify high resuspension rates. Non-exhaust emissions, such as brake, tire, and road wear, may largely contribute to BC emissions, with a contribution that is equivalent to exhaust emissions. Here, a sensitivity analysis of BC concentrations is performed by comparing simulations with different emission factors of tire, brake, and road wear. The different emission factors considered are estimated based on the literature. We found a satisfying model–measurement comparison using high tire wear emission factors, which may indicate that the tire emission factors usually used in Europe are probably underestimated. These results have important policy implications: public policies replacing internal combustion engines with electric vehicles may not eliminate BC air pollution but only reduce it by half.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1333
Author(s):  
Claudia Falzone ◽  
Jérémy Muller ◽  
Anne-Claude Romain

In 2020, the world was affected by an unprecedented health crisis. Europe had to close its internal and external borders, and the majority of countries had to impose lockdowns on their people. Shops, restaurants, building sites, and industries had to close, and working from home became the rule. This paper reflects a study conducted from 17 March to 25 June 2020, in which homemade low-cost devices measured PM2.5 concentrations at three different locations around a Belgian school and background concentrations. The period monitored covered seven reopening stages from lockdown to the reopening of borders. The overall analysis did not show any correlation between traffic and PM2.5 concentrations in the streets in any of the phases. However, the analysis of each reopening showed that it was possible to observe significant differences in the background concentrations measured in a rural town and on urban streets.


2021 ◽  
Author(s):  
Bernhard Wagner ◽  
Anneke Tammen ◽  
Dietmar Jung

Abstract Typical element background concentrations of rock units in Bavaria were evaluated by statistical means and presented in a lithogeochemical map, derived from the geological map at a scale of 1:25,000. The elements include 39 geogenic main and trace elements (SiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, TiO2, P2O5 Li, Be, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Cd, Sn, Sb, Cs, Ba, La, Ce, Tl, Pb, Bi , Th and U). The distributions of element concentrations in the lithogeochemical units follow closely lognormal patterns in a large majority of cases. Statistical parameters (10th, 25th, 50th, 75th, 90th percentiles) of investigated elements were determined using the cenfit function of the NADA package within the open source program R. The investigation, based on 8,838 analysed samples, provided data for about 2/3 of the area of Bavaria. The lithogeochemical map with medians (50th percentiles) and background values (90th percentiles) of the investigated elements is available in a web map application. Thus, the regional geogenic background values of the investigated elements in Bavaria are publicly available for a large variety of applications.


2021 ◽  
pp. 102100
Author(s):  
Sina Shahabi-Ghahfarokhi ◽  
Mats Åström ◽  
Sarah Josefsson ◽  
Anna Apler ◽  
Marcelo Ketzer

2021 ◽  
Vol 14 (7) ◽  
pp. 4555-4572
Author(s):  
Edward C. Chan ◽  
Timothy M. Butler

Abstract. This paper describes a large-eddy simulation based chemical transport model, developed under the OpenFOAM framework, implemented to simulate dispersion and chemical transformation of nitrogen oxides from traffic sources in an idealized street canyon. The dynamics of the model, in terms of mean velocity and turbulent fluctuation, are evaluated using available stationary measurements. A transient model run using a photostationary reaction mechanism for nitrogen oxides and ozone subsequently follows, where non-stationary conditions for meteorology, background concentrations, and traffic emissions are applied over a 24 h period, using regional model data and measurements obtained for the city of Berlin in July 2014. Diurnal variations of pollutant concentrations indicate dependence on emission levels, background concentrations, and solar state. Comparison of vertical and horizontal profiles with corresponding stationary model runs at select times show that while there are only slight differences in velocity magnitude, visible changes in primary and secondary flow structures can be observed. In addition, temporal variations in diurnal profile and cumulative species concentration result in significant deviations in computed pollutant concentrations between transient and stationary model runs.


2021 ◽  
Vol 233 ◽  
pp. 106590
Author(s):  
B.G. Fritz ◽  
ThomasR. Alexander ◽  
TheodoreW. Bowyer ◽  
JamesC. Hayes ◽  
EmilyK. Mace ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Benjamin Turc ◽  
Pierre Vollenweider ◽  
Didier Le Thiec ◽  
Anthony Gandin ◽  
Marcus Schaub ◽  
...  

With background concentrations having reached phytotoxic levels during the last century, tropospheric ozone (O3) has become a key climate change agent, counteracting carbon sequestration by forest ecosystems. One of the main knowledge gaps for implementing the recent O3 flux-based critical levels (CLs) concerns the assessment of effective O3 dose leading to adverse effects in plants. In this study, we investigate the dynamics of physiological, structural, and morphological responses induced by two levels of O3 exposure (80 and 100 ppb) in the foliage of hybrid poplar, as a function of phytotoxic O3 dose (POD0) and foliar developmental stage. After a latency period driven by foliar ontological development, the gas exchanges and chlorophyll content decreased with higher POD0 monotonically. Hypersensitive response-like lesions appeared early during exposure and showed sigmoidal-like dynamics, varying according to leaf age. At current POD1_SPEC CL, notwithstanding the aforementioned reactions and initial visible injury to foliage, the treated poplars had still not shown any growth or biomass reduction. Hence, this study demonstrates the development of a complex syndrome of early reactions below the flux-based CL, with response dynamics closely determined by the foliar ontological stage and environmental conditions. General agreement with patterns observed in the field appears indicative of early O3 impacts on processes relevant, e.g., biodiversity ecosystem services before those of economic significance – i.e., wood production, as targeted by flux-based CL.


Sign in / Sign up

Export Citation Format

Share Document