scholarly journals Regional variability of acidification in the Arctic: a sea of contrasts

2014 ◽  
Vol 11 (2) ◽  
pp. 293-308 ◽  
Author(s):  
E. E. Popova ◽  
A. Yool ◽  
Y. Aksenov ◽  
A. C. Coward ◽  
T. R. Anderson

Abstract. The Arctic Ocean is a region that is particularly vulnerable to the impact of ocean acidification driven by rising atmospheric CO2, with potentially negative consequences for calcifying organisms such as coccolithophorids and foraminiferans. In this study, we use an ocean-only general circulation model, with embedded biogeochemistry and a comprehensive description of the ocean carbon cycle, to study the response of pH and saturation states of calcite and aragonite to rising atmospheric pCO2 and changing climate in the Arctic Ocean. Particular attention is paid to the strong regional variability within the Arctic, and, for comparison, simulation results are contrasted with those for the global ocean. Simulations were run to year 2099 using the RCP8.5 (an Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) scenario with the highest concentrations of atmospheric CO2). The separate impacts of the direct increase in atmospheric CO2 and indirect effects via impact of climate change (changing temperature, stratification, primary production and freshwater fluxes) were examined by undertaking two simulations, one with the full system and the other in which atmospheric CO2 was prevented from increasing beyond its preindustrial level (year 1860). Results indicate that the impact of climate change, and spatial heterogeneity thereof, plays a strong role in the declines in pH and carbonate saturation (Ω) seen in the Arctic. The central Arctic, Canadian Arctic Archipelago and Baffin Bay show greatest rates of acidification and Ω decline as a result of melting sea ice. In contrast, areas affected by Atlantic inflow including the Greenland Sea and outer shelves of the Barents, Kara and Laptev seas, had minimal decreases in pH and Ω because diminishing ice cover led to greater vertical mixing and primary production. As a consequence, the projected onset of undersaturation in respect to aragonite is highly variable regionally within the Arctic, occurring during the decade of 2000–2010 in the Siberian shelves and Canadian Arctic Archipelago, but as late as the 2080s in the Barents and Norwegian seas. We conclude that, for future projections of acidification and carbonate saturation state in the Arctic, regional variability is significant and needs to be adequately resolved, with particular emphasis on reliable projections of the rates of retreat of the sea ice, which are a major source of uncertainty.

2013 ◽  
Vol 10 (2) ◽  
pp. 2937-2965 ◽  
Author(s):  
E. E. Popova ◽  
A. Yool ◽  
A. C. Coward ◽  
T. R. Anderson

Abstract. The Arctic Ocean is a region that is particularly vulnerable to the impact of ocean acidification driven by rising atmospheric CO2, negatively impacting calcifying organisms such as coccolithophorids and foraminiferans. In this study, we use an ocean general circulation model, with embedded biogeochemistry and a full description of the carbon cycle, to study the response of pH and saturation states of calcite and aragonite to changing climate in the Arctic Ocean. Particular attention is paid to the strong regional variability within the Arctic and, for comparison, simulation results are contrasted with those for the global ocean. Simulations were run to year 2099 using the RCP 8.5 (the highest IPCC AR5 CO2 emission scenario). The separate impacts of the direct increase in atmospheric CO2 and indirect effects via climate feedbacks (changing temperature, stratification, primary production and fresh water fluxes) were examined by undertaking two simulations, one with the full system and the other in which ocean-atmosphera exchange of CO2 was prevented from increasing beyond the flux calculated for year 2000. Results indicate that climate feedbacks, and spatial heterogeneity thereof, play a strong role in the declines in pH and carbonate saturation (Ω) seen in the Arctic. The central Arctic, Canadian Arctic Archipelago and Baffin Bay show greatest rates of acidification and Ω decline as a result of melting sea ice. In contrast, areas affected by Atlantic inflow including the Greenland Sea and outer shelves of the Barents, Kara and Laptev seas, had minimal decreases in pH and Ω because weakening stratification associated with diminishing ice cover led to greater mixing and primary production. As a consequence, the predicted onset of undersaturation is highly variable regionally within the Arctic, occurring during the decade of 2000–2010 in the Siberian shelves and Canadian Arctic Archipelago, but as late as the 2080s in the Barents and Norwegian Seas. We conclude that, in order to make future projections of acidification and carbon saturation state in the Arctic, regional variability needs to be adequately resolved, with particular emphasis on reliable predictions of the rates of retreat of the sea-ice which are a major source of uncertainty.


2020 ◽  
Vol 11 ◽  
Author(s):  
Lisa W. von Friesen ◽  
Lasse Riemann

The Arctic Ocean is the smallest ocean on Earth, yet estimated to play a substantial role as a global carbon sink. As climate change is rapidly changing fundamental components of the Arctic, it is of local and global importance to understand and predict consequences for its carbon dynamics. Primary production in the Arctic Ocean is often nitrogen-limited, and this is predicted to increase in some regions. It is therefore of critical interest that biological nitrogen fixation, a process where some bacteria and archaea termed diazotrophs convert nitrogen gas to bioavailable ammonia, has now been detected in the Arctic Ocean. Several studies report diverse and active diazotrophs on various temporal and spatial scales across the Arctic Ocean. Their ecology and biogeochemical impact remain poorly known, and nitrogen fixation is so far absent from models of primary production in the Arctic Ocean. The composition of the diazotroph community appears distinct from other oceans – challenging paradigms of function and regulation of nitrogen fixation. There is evidence of both symbiotic cyanobacterial nitrogen fixation and heterotrophic diazotrophy, but large regions are not yet sampled, and the sparse quantitative data hamper conclusive insights. Hence, it remains to be determined to what extent nitrogen fixation represents a hitherto overlooked source of new nitrogen to consider when predicting future productivity of the Arctic Ocean. Here, we discuss current knowledge on diazotroph distribution, composition, and activity in pelagic and sea ice-associated environments of the Arctic Ocean. Based on this, we identify gaps and outline pertinent research questions in the context of a climate change-influenced Arctic Ocean – with the aim of guiding and encouraging future research on nitrogen fixation in this region.


2013 ◽  
Vol 118 (7) ◽  
pp. 3595-3607 ◽  
Author(s):  
Stephen E. L. Howell ◽  
Trudy Wohlleben ◽  
Mohammed Dabboor ◽  
Chris Derksen ◽  
Alexander Komarov ◽  
...  

Polar Record ◽  
1993 ◽  
Vol 29 (171) ◽  
pp. 305-312 ◽  
Author(s):  
Martin O. Jeffries ◽  
M. Amanda Shaw

ABSTRACTThe drift of Hobson's Choice Ice Island from the Arctic Ocean into the channels of the Queen Elizabeth Islands, Northwest Territories, Canadian Arctic, between February 1988 and August 1992, was monitored by a Système Argos satellite-positioning buoy. During the period August 1991 to May 1992, the ice island was imaged by synthetic aperture radar (SAR) aboard the ERS-1 satellite. The buoy data show that Hobson's Choice entered Peary Channel (between Axel Heiberg Island and Ellef Ringnes Island) in October 1988. Subsequently, between mid-August 1991 and November 1991, it drifted rapidly south to Queens Channel (60 km north of Cornwallis Island). The SAR data corroborate the buoy data and also reveal that at least six other ice islands entered the Queen Elizabeth Islands' channels with Hobson's Choice. The SAR imagery also recorded the fragmentation of Hobson's Choice between mid-October and mid-November 1991. The buoy and SAR data are conclusive evidence that ice islands do leave the Arctic Ocean via the northwestern channels of the Canadian Arctic archipelago. The observed drift occurred when there was extensive break-up of fast ice in the inter-island channels caused by above average summer temperatures, in combination with favourable atmospheric circulation and surface winds that drove the ice islands into and through the channels.


2020 ◽  
Author(s):  
Stephen Howell ◽  
Mike Brady

<p>The ice arches that ring the northern Canadian Arctic Archipelago have historically blocked the inflow of Arctic Ocean sea ice for the majority of the year. However, annual average air temperature in northern Canada has increased by more than 2°C over the past 65+ years and a warmer climate is expected to contribute to the deterioration of these ice arches, which in turn has implications for the overall loss of Arctic Ocean sea ice. We investigated the effect of warming on the Arctic Ocean ice area flux into the Canadian Arctic Archipelago using a 22-year record (1997-2018) of ice exchange derived from RADARSAT-1 and RADARSAT-2 imagery. Results indicated that there has been a significant increase in the amount of Arctic Ocean sea ice (10<sup>3</sup> km<sup>2</sup>/year) entering the northern Canadian Arctic Archipelago over the period of 1997-2018. The increased Arctic Ocean ice area flux was associated with reduced ice arch duration but also with faster (thinner) moving ice and more southern latitude open water leeway as a result of the Canadian Arctic Archipelago’s long-term transition to a younger and thinner ice regime. Remarkably, in 2016, the Arctic Ocean ice area flux into the Canadian Arctic Archipelago (161x10<sup>3</sup> km<sup>2</sup>) was 7 times greater than the 1997-2018 average (23x10<sup>3</sup> km<sup>2</sup>) and almost double the 2007 ice area flux into Nares Strait (87x10<sup>3</sup> km<sup>2</sup>). Indeed, Nares Strait is known to be an important pathway for Arctic Ocean ice loss however, the results of this study suggest that with continued warming, the Canadian Arctic Archipelago may also become a large contributor to Arctic Ocean ice loss.</p>


2010 ◽  
Vol 7 (4) ◽  
pp. 5557-5620 ◽  
Author(s):  
E. E. Popova ◽  
A. Yool ◽  
A. C. Coward ◽  
Y. K. Aksenov ◽  
S. G. Alderson ◽  
...  

Abstract. Until recently, the Arctic Basin was generally considered to be a low productivity area and was afforded little attention in global- or even basin-scale ecosystem modelling studies. Due to anthropogenic climate change however, the sea ice cover of the Arctic Ocean is undergoing an unexpectedly fast retreat, exposing increasingly large areas of the basin to sunlight. As indicated by existing Arctic phenomena such as ice-edge blooms, this decline in sea-ice is liable to encourage pronounced growth of phytoplankton in summer and poses pressing questions concerning the future of Arctic ecosystems. It thus provides a strong impetus to modelling of this region. The Arctic Ocean is an area where plankton productivity is heavily influenced by physical factors. As these factors are strongly responding to climate change, we analyse here the results from simulations of the 1/4° resolution global ocean NEMO (Nucleus for European Modelling of the Ocean) model coupled with the MEDUSA (Model for Ecosystem Dynamics, carbon Utilisation, Sequestration and Acidification) biogeochemical model, with a particular focus on the Arctic Basin. Simulated productivity is consistent with the limited observations for the Arctic, with significant production occurring both under the sea-ice and at the thermocline, locations that are difficult to sample in the field. Results also indicate that a substantial fraction of the variability in Arctic primary production can be explained by two key physical factors: (i) the maximum penetration of winter mixing, which determines the amount of nutrients available for summer primary production, and (ii) short-wave radiation at the ocean surface, which controls the magnitude of phytoplankton blooms. A strong empirical correlation was found in the model output between primary production these two factors, highlighting the importance of physical processes in the Arctic Ocean.


2011 ◽  
Vol 8 (7) ◽  
pp. 1987-2007 ◽  
Author(s):  
I. I. Pipko ◽  
I. P. Semiletov ◽  
S. P. Pugach ◽  
I. Wåhlström ◽  
L. G. Anderson

Abstract. Over the past couple of decades it has become apparent that air-land-sea interactions in the Arctic have a substantial impact on the composition of the overlying atmosphere (ACIA, 2004). The Arctic Ocean is small (only ~4 % of the total World Ocean), but it is surrounded by offshore and onshore permafrost which is thawing at increasing rates under warming conditions, releasing carbon dioxide (CO2) into the water and atmosphere. The Arctic Ocean shelf where the most intensive biogeochemical processes have occurred occupies 1/3 of the ocean. The East Siberian Sea (ESS) shelf is the shallowest and widest shelf among the Arctic seas, and the least studied. The objective of this study was to highlight the importance of different factors that impact the carbon system (CS) as well as the CO2 flux dynamics in the ESS. CS variables were measured in the ESS in September 2003 and, 2004 and in late August–September 2008. It was shown that the western part of the ESS represents a river- and coastal-erosion-dominated heterotrophic ocean margin that is a source for atmospheric CO2. The eastern part of the ESS is a Pacific-water-dominated autotrophic area, which acts as a sink for atmospheric CO2. Our results indicate that the year-to-year dynamics of the partial pressure of CO2 in the surface water as well as the air-sea flux of CO2 varies substantially. In one year the ESS shelf was mainly heterotrophic and served as a moderate summertime source of CO2 (year 2004). In another year gross primary production exceeded community respiration in a relatively large part of the ESS and the ESS shelf was only a weak source of CO2 into the atmosphere (year 2008). It was shown that many factors impact the CS and CO2 flux dynamics (such as river runoff, coastal erosion, primary production/respiration, etc.), but they were mainly determined by the interplay and distribution of water masses that are basically influenced by the atmospheric circulation. In this contribution the air-sea CO2 fluxes were evaluated in the ESS based on measured CS characteristics, and summertime fluxes were estimated. It was shown that the total ESS shelf is a net source of CO2 for the atmosphere in a range of 0.4 × 1012 to 2.3 × 1012 g C.


2010 ◽  
Vol 7 (11) ◽  
pp. 3569-3591 ◽  
Author(s):  
E. E. Popova ◽  
A. Yool ◽  
A. C. Coward ◽  
Y. K. Aksenov ◽  
S. G. Alderson ◽  
...  

Abstract. Until recently, the Arctic Basin was generally considered to be a low productivity area and was afforded little attention in global- or even basin-scale ecosystem modelling studies. Due to anthropogenic climate change however, the sea ice cover of the Arctic Ocean is undergoing an unexpectedly fast retreat, exposing increasingly large areas of the basin to sunlight. As indicated by existing Arctic phenomena such as ice-edge blooms, this decline in sea-ice is liable to encourage pronounced growth of phytoplankton in summer and poses pressing questions concerning the future of Arctic ecosystems. It thus provides a strong impetus to modelling of this region. The Arctic Ocean is an area where plankton productivity is heavily influenced by physical factors. As these factors are strongly responding to climate change, we analyse here the results from simulations of the 1/4° resolution global ocean NEMO (Nucleus for European Modelling of the Ocean) model coupled with the MEDUSA (Model for Ecosystem Dynamics, carbon Utilisation, Sequestration and Acidification) biogeochemical model, with a particular focus on the Arctic basin. Simulated productivity is consistent with the limited observations for the Arctic, with significant production occurring both under the sea-ice and at the thermocline, locations that are difficult to sample in the field. Results also indicate that a substantial fraction of the variability in Arctic primary production can be explained by two key physical factors: (i) the maximum penetration of winter mixing, which determines the amount of nutrients available for summer primary production, and (ii) short-wave radiation at the ocean surface, which controls the magnitude of phytoplankton blooms. A strong empirical correlation was found in the model output between primary production and these two factors, highlighting the importance of physical processes in the Arctic Ocean.


Sign in / Sign up

Export Citation Format

Share Document