nares strait
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 40)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Vol 8 ◽  
pp. 39-45
Author(s):  
Robert Glenn Johnson

The extremely heavy precipitation that initiated the Last Ice Age (the Wisconsin Glaciation in Canada) was caused by a strong and persistent atmospheric low-pressure system centered over the northern Labrador Sea and southern Baffin Bay. This system, called the Labrador Low, was dependent on strong deep-water formation in the northern end of Baffin Bay. The replacement for the sinking deep water consisted of warmer and more saline Irminger Current water that mixed into the northward-flowing West Greenland Current near the center of the Labrador Low. The heavy precipitation in northeastern Canada began after the stratification in Baffin Bay was eliminated by the southward flow of denser Atlantic water through the Nares Strait. This temporary flow began when the oscillating Atlantic Meridional Oceanic Circulation (AMOC) flow reached a maximum greater than today. This sent Atlantic water westward, north of Greenland and through the Nares Strait. Although the extremely heavy snowfall began the Wisconsin Glaciation in Canada, the initiation of the Last Ice Age in Eurasia was a more complex process and was delayed by about 4,000 years by formation of the Hudson Strait ice dam.


2021 ◽  
Vol 15 (9) ◽  
pp. 4357-4380
Author(s):  
Henrieka Detlef ◽  
Brendan Reilly ◽  
Anne Jennings ◽  
Mads Mørk Jensen ◽  
Matt O'Regan ◽  
...  

Abstract. The Petermann 2015 expedition to Petermann Fjord and adjacent Hall Basin recovered a transect of cores, extending from Nares Strait to underneath the 48 km long ice tongue of Petermann glacier, offering a unique opportunity to study ice–ocean–sea ice interactions at the interface of these realms. First results suggest that no ice tongue existed in Petermann Fjord for large parts of the Holocene, raising the question of the role of the ocean and the marine cryosphere in the collapse and re-establishment of the ice tongue. Here we use a multi-proxy approach (sea-ice-related biomarkers, total organic carbon and its carbon isotopic composition, and benthic and planktonic foraminiferal abundances) to explore Holocene sea ice dynamics at OD1507-03TC-41GC-03PC in outer Petermann Fjord. Our results are in line with a tight coupling of the marine and terrestrial cryosphere in this region and, in connection with other regional sea ice reconstructions, give insights into the Holocene evolution of ice arches and associated landfast ice in Nares Strait. The late stages of the regional Holocene Thermal Maximum (6900–5500 cal yr BP) were marked by reduced seasonal sea ice concentrations in Nares Strait and the lack of ice arch formation. This was followed by a transitional period towards Neoglacial cooling from 5500–3500 cal yr BP, where a southern ice arch might have formed, but an early seasonal breakup and late formation likely caused a prolonged open water season and enhanced pelagic productivity in Nares Strait. Between 3500 and 1400 cal yr BP, regional records suggest the formation of a stable northern ice arch only, with a short period from 2500–2100 cal yr BP where a southern ice arch might have formed intermittently in response to atmospheric cooling spikes. A stable southern ice arch, or even double arching, is also inferred for the period after 1400 cal yr BP. Thus, both the inception of a small Petermann ice tongue at ∼ 2200 cal yr BP and its rapid expansion at ∼ 600 cal yr BP are preceded by a transition towards a southern ice arch regime with landfast ice formation in Nares Strait, suggesting a stabilizing effect of landfast sea ice on Petermann Glacier.


2021 ◽  
Vol 48 (17) ◽  
Author(s):  
Paul G. Myers ◽  
Laura Castro de la Guardia ◽  
Chuanshuai Fu ◽  
Laura C. Gillard ◽  
Nathan Grivault ◽  
...  

Author(s):  
S. Kirillov ◽  
D. G. Babb ◽  
A. S. Komarov ◽  
I. Dmitrenko ◽  
J. K. Ehn ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
G. W. K. Moore

AbstractNares Strait is a major pathway along which multi-year sea ice leaves the Arctic, an ice class that has seen a recent dramatic reduction in extent. The winds that blow along the strait play an important role in modulating this ice export as well as in establishing the Arctic’s largest and most productive polynya, the North Water, that forms at its southern terminus. However, its remote location has limited our knowledge of the winds along the strait. Here we use automatic weather station data from Hans Island, in the middle of the strait, to assess the ability of a set of atmospheric renalyses and analyses with a common lineage but with varying horizontal resolution to represent the variability in the wind field. We find that the flow is highly bidirectional, consistent with topographic channeling, with the highest wind speeds from the north and that a model resolution of ~ 9 km is required to capture the observed variability. The wind field at Hans Island is also found to be representative of variability in the flow along much of Nares Strait.


2021 ◽  
Author(s):  
Brendan A West ◽  
Devin Thomas O'Connor ◽  
Matthew Parno ◽  
Max Krackow ◽  
Chris M Polashenski

2021 ◽  
pp. 495-504
Author(s):  
John S. Peel ◽  
Christian B. Skovsted

Three small assemblages of lower Cambrian (Cambrian Series 2, Stage 4) small shelly fossils are described from Laurentian strata astride Nares Strait. The fauna from the Humboldt Formation of Daugaard-Jensen Land, North Greenland, is derived from inner shelf sediments deposited on the stable craton of the Inglefield Land High. Fossils from Judge Daly Promontory, eastern Ellesmere Island, Nunavut, occur in strata of the Cambrian Ellesmere Group (Kane Basin Formation) that have been structurally juxtaposed against older strata; they were originally assigned to the Kennedy Channel Formation, which is now considered to be of Neoproterozoic age. A similar fauna from offshore environments of the Aftenstjernesø Formation in northern Nyeboe Land, North Greenland, reflects the regional structural and sedimentological continuity with the Canadian Cambrian succession. Pojetaia robsonae sp. nov. is described from Judge Daly Promontory.


2021 ◽  
Vol 40 ◽  
Author(s):  
Svenja H.E. Kohnemann ◽  
Günther Heinemann

Intense, southward low-level winds are common in Nares Strait, between Ellesmere Island and northern Greenland. The steep topography along Nares Strait leads to channelling effects, resulting in an along-strait flow. This research study presents a 30-year climatology of the flow regime from simulations of the COSMO-CLM climate model. The simulations are available for the winter periods (November–April) 1987/88 to 2016/17, and thus, cover a period long enough to give robust long-term characteristics of Nares Strait. The horizontal resolution of 15 km is high enough to represent the complex terrain and the meteorological conditions realistically. The 30-year climatology shows that LLJs associated with gap flows are a climatological feature of Nares Strait. The maximum of the mean 10-m wind speed is around 12 m s-1 and is located at the southern exit of Smith Sound. The wind speed is strongly related to the pressure gradient. Single events reach wind speeds of 40 m s-1 in the daily mean. The LLJs are associated with gap flows within the narrowest parts of the strait under stably stratified conditions, with the main LLJ occurring at 100–250 m height. With increasing mountain Froude number, the LLJ wind speed and height increase. The frequency of strong wind events (>20 m s-1 in the daily mean) for the 10 m wind shows a strong interannual variability with an average of 15 events per winter. Channelled winds have a strong impact on the formation of the North Water polynya.


2021 ◽  
Author(s):  
G. W. K. Moore

Abstract Nares Strait is a major pathway along which multi-year sea ice leaves the Arctic, an ice class that seen a recent dramatic reduction in extent. The winds that blow along the strait play an important role in modulating this ice export as well as in establishing the Arctic’s largest and most productive polynya, the North Water, that forms at its southern terminus. However, its remote location has limited knowledge of the winds along the strait. Here we use automatic weather station from Hans Island, in the middle of the strait, to assess the ability of a set of atmospheric analyses with a common lineage but with varying horizontal resolution to represent the variability in the wind field. We find that the flow is highly bidirectional, consistent with topographic channeling, with the highest wind speeds from the north and that a model resolution of ~9km is required to capture the observed variability. The wind field at Hans Island is also found to be representative of variability in the flow along much of Nares Strait.


2021 ◽  
Author(s):  
Henrieka Detlef ◽  
Brendan Reilly ◽  
Anne Jennings ◽  
Mads Mørk jensen ◽  
Matt O'Regan ◽  
...  

<p>Today Nares Strait is covered by sea ice for 11 months per year. The seasonal sea-ice regime and formation of landfast ice depend on the development of ice arches. Historically a northern and southern ice arch have been observed in Robeson Channel and Smith Sound, respectively, with only the southern arch leading to a complete freeze up of the strait. In recent decades, the northern arch has become more prominent, indicating a regime shift in Nares Strait sea-ice dynamics with important consequences for the export of ice from the Lincoln Sea, the regional oceanography, and the ecosystem related to the annual opening of the North Water Polynya lee of the southern ice arch. Modelling studies suggest a link between mobile sea ice and enhanced Ekman transport of modified Atlantic Water to Greenland fjord systems bordering Nares Strait. Further, a reduction in the fjords’ fast ice season, in response to Nares Strait sea-ice dynamics, might decrease its buttressing effect on the marine-terminating outlet glaciers in northern Greenland. One such glacier is Petermann Glacier, draining 4% of the Greenland Ice Sheet and terminating in a 48 km long ice tongue in Petermann Fjord.</p><p>The Petermann 2015 Expedition to Petermann Fjord and adjacent Hall Basin recovered a transect of cores from Nares Strait to under the 48 km long ice tongue of Petermann glacier. First results suggest that no ice tongue existed in Petermann Fjord for large parts of the Holocene, raising the question of the role of the ocean and the marine cryosphere in the collapse and re-establishment of the ice tongue. We present a multi-proxy study (sea-ice related biomarkers, total organic carbon and its carbon isotopic composition, and benthic and planktonic foraminiferal abundances) exploring the Holocene sea-ice dynamics at site OD1507-03TC-41GC-03PC in outer Petermann Fjord. Our results are in line with a tight coupling of the marine and terrestrial cryosphere in this region and, in connection with other regional sea-ice reconstructions, give insights into the Holocene evolution of ice arches and associated landfast ice in Nares Strait.</p>


Sign in / Sign up

Export Citation Format

Share Document