scholarly journals Carbon exchange between the atmosphere and subtropical forested cypress and pine wetlands

2015 ◽  
Vol 12 (8) ◽  
pp. 2285-2300 ◽  
Author(s):  
W. B. Shoemaker ◽  
F. Anderson ◽  
J. G. Barr ◽  
S. L. Graham ◽  
D. B. Botkin

Abstract. Carbon dioxide exchange between the atmosphere and forested subtropical wetlands is largely unknown. Here we report a first step in characterizing this atmospheric–ecosystem carbon (C) exchange, for cypress strands and pine forests in the Greater Everglades of Florida as measured with eddy covariance methods at three locations (Cypress Swamp, Dwarf Cypress and Pine Upland) for 2 years. Links between water and C cycles are also examined at these three sites, as are methane emission measured only at the Dwarf Cypress site. Each forested wetland showed net C uptake from the atmosphere both monthly and annually, as indicated by the net ecosystem exchange (NEE) of carbon dioxide (CO2). For this study, NEE is the difference between photosynthesis and respiration, with negative values representing uptake from the atmosphere that is retained in the ecosystem or transported laterally via overland flow (unmeasured for this study). Atmospheric C uptake (NEE) was greatest at the Cypress Swampp (−900 to −1000 g C m2 yr−1), moderate at the Pine Upland (−650 to −700 g C m2 yr−1) and least at the Dwarf Cypress (−400 to −450 g C m2 yr−1). Changes in NEE were clearly a function of seasonality in solar insolation, air temperature and flooding, which suppressed heterotrophic soil respiration. We also note that changes in the satellite-derived enhanced vegetation index (EVI) served as a useful surrogate for changes in NEE at these forested wetland sites.

2014 ◽  
Vol 11 (11) ◽  
pp. 15753-15791
Author(s):  
W. B. Shoemaker ◽  
J. G. Barr ◽  
D. B. Botkin ◽  
S. L. Graham

Abstract. Carbon dioxide exchange between the atmosphere and forested subtropical wetlands is largely unknown. Here we report a first step in characterizing this atmospheric–ecosystem carbon (C) exchange, for cypress strands and pine forests in the Greater Everglades of Florida as measured with eddy covariance methods at three locations (Cypress Swamp, Dwarf Cypress and Pine Upland) for one year. Links between water and C cycles are examined at these three sites, and methane emission measured only at the Dwarf Cypress site. Each forested wetland showed net C uptake (retained in the soil and biomass or transported laterally via overland flow) from the atmosphere monthly and annually. Net ecosystem exchange (NEE) of carbon dioxide (CO2) (difference between photosynthesis and respiration, with negative values representing net ecosystem uptake) was greatest at the Cypress Swamp (−1000 g C m-2 year-1), moderate at the Pine Upland (−900 g C m-2 year-1), and least at the Dwarf Cypress (−500 g C m-2 year-1). Methane emission was a negligible part of the C (12 g C m-2 year-1) budget when compared to NEE. However, methane (CH4) production was considerable in terms of global warming potential, as about 20 g CH4 emitted per m2 year was equivalent to about 500 g CO2 emitted per m2 year}. Changes in NEE were clearly a function of seasonality in solar insolation, air temperature and water availability from rainfall. We also note that changes in the satellite-derived enhanced-vegetation index (EVI) served as a useful surrogate for changes in net and gross atmospheric–ecosystem C exchange at these forested wetland sites.


Author(s):  
R Skinner ◽  
W Dugas ◽  
P Mielnick ◽  
V Baron ◽  
C La Bine ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1373
Author(s):  
Amir Izzuddin Adnan ◽  
Mei Yin Ong ◽  
Saifuddin Nomanbhay ◽  
Pau Loke Show

Carbon dioxide is the most influential gas in greenhouse gasses and its amount in the atmosphere reached 412 µmol/mol in August 2020, which increased rapidly, by 48%, from preindustrial levels. A brand-new chemical industry, namely organic chemistry and catalysis science, must be developed with carbon dioxide (CO2) as the source of carbon. Nowadays, many techniques are available for controlling and removing carbon dioxide in different chemical processes. Since the utilization of CO2 as feedstock for a chemical commodity is of relevance today, this study will focus on how to increase CO2 solubility in culture media used for growing microbes. In this work, the CO2 solubility in a different medium was investigated. Sodium hydroxide (NaOH) and monoethanolamine (MEA) were added to the culture media (3.0 g/L dipotassium phosphate (K2HPO4), 0.2 g/L magnesium chloride (MgCl2), 0.2 g/L calcium chloride (CaCl2), and 1.0 g/L sodium chloride (NaCl)) for growing microbes in order to observe the difference in CO2 solubility. Factors of temperature and pressure were also studied. The determination of CO2 concentration in the solution was measured by gas analyzer. The result obtained from optimization revealed a maximum CO2 concentration of 19.029 mol/L in the culture media with MEA, at a pressure of 136.728 kPa, operating at 20.483 °C.


2007 ◽  
Vol 0 (0) ◽  
pp. 070621084512032-???
Author(s):  
KATHERINE E. OWEN ◽  
JOHN TENHUNEN ◽  
MARKUS REICHSTEIN ◽  
QUAN WANG ◽  
EVA FALGE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document