scholarly journals Towards an assessment of riverine dissolved organic carbon in surface waters of the western Arctic Ocean based on remote sensing and biogeochemical modeling

2018 ◽  
Vol 15 (5) ◽  
pp. 1335-1346 ◽  
Author(s):  
Vincent Le Fouest ◽  
Atsushi Matsuoka ◽  
Manfredi Manizza ◽  
Mona Shernetsky ◽  
Bruno Tremblay ◽  
...  

Abstract. Future climate warming of the Arctic could potentially enhance the load of terrigenous dissolved organic carbon (tDOC) of Arctic rivers due to increased carbon mobilization within watersheds. A greater flux of tDOC might impact the biogeochemical processes of the coastal Arctic Ocean (AO) and ultimately its capacity to absorb atmospheric CO2. In this study, we show that sea-surface tDOC concentrations simulated by a physical–biogeochemical coupled model in the Canadian Beaufort Sea for 2003–2011 compare favorably with estimates retrieved by satellite imagery. Our results suggest that, over spring–summer, tDOC of riverine origin contributes to 35 % of primary production and that an equivalent of ∼ 10 % of tDOC is exported westwards with the potential of fueling the biological production of the eastern Alaskan nearshore waters. The combination of model and satellite data provides promising results to extend this work to the entire AO so as to quantify, in conjunction with in situ data, the expected changes in tDOC fluxes and their potential impact on the AO biogeochemistry at basin scale.

2017 ◽  
Author(s):  
Vincent Le Fouest ◽  
Atsushi Matsuoka ◽  
Manfredi Manizza ◽  
Mona Shernetsky ◽  
Bruno Tremblay ◽  
...  

Abstract. Future climate warming of the Arctic could potentially enhance the load of riverine dissolved organic carbon (RDOC) of Arctic rivers due to increased carbon mobilization within watersheds. A greater flux of RDOC might thus impact the biogeochemical processes of the coastal Arctic Ocean (AO). In this study, we show that estimates of RDOC concentrations in the surface waters of the Canadian Beaufort Sea computed for 2003–2011 by both optical remote sensing and a physical-biogeochemical coupled model compare favorably. Our results suggest that, over spring-summer, RDOC contributes to 35 % of primary production and that an equivalent of ~ 10 % of the riverine RDOC is exported westwards with a potential for fueling the biological production of the eastern Alaskan nearshore waters. The combination of model and satellite data can be extended to the entire AO to quantify the expected changes in RDOC fluxes and their potential impact on AO biogeochemistry. This is left for future work.


2021 ◽  
Author(s):  
Rene Preusker ◽  
Jan El Kassar ◽  
Bennet Juhls

<p>As air temperatures in the Arctic continue to rise, permafrost thaw intensifies, and discharge from the Arctic rivers increases. These drastic changes are likely to accelerate mobilization of organic matter and its export through rivers into the Arctic Ocean. Therefore, thorough monitoring of these processes becomes increasingly important. The Lena River with its large catchment area is one of the major sources of the organic carbon in the Arctic Ocean and, therefore, plays a crucial role in the Arctic carbon cycle. <br>To observe current and future changes of carbon transport via the Lena River, a new monitoring program has been initiated in 2018. In situ water samples are collected from the one of the Lena Delta branches every several days. Since generally the in situ sampling in the Arctic is challenging and costly, in this study, we test the potential of remote sensing to complement the field observations. Remote sensing provides synoptic spatial coverages and high temporal resolution at high latitudes. <br>We test the retrieval of dissolved organic carbon (DOC) from satellite-derived chromophoric dissolved organic matter (CDOM). For this, we use measurements of the Ocean & Land Colour Instrument (OLCI) on board the Sentinel-3 satellites in combination with beforehand tested atmospheric correction algorithms and CDOM retrieval algorithms. The quality of the satellite retrieved DOC of the Lena River water is assessed by DOC, measured in the in situ samples. Remotely sensed DOC contributes to an improvement of DOC fluxes monitoring, which can potentially be extended to all big Arctic rivers.</p>


2014 ◽  
Vol 7 (6) ◽  
pp. 8399-8432 ◽  
Author(s):  
A. Samuelsen ◽  
C. Hansen ◽  
H. Wehde

Abstract. The HYCOM-NORWECOM modeling system is used both for basic research and as a part of the forecasting system for the Arctic Marine Forecasting Centre through the MyOcean project. Here we present a revised version of this model. The present model, as well as the sensitivity simulations leading up to this version, has been compared to a dataset of in-situ measurements of nutrient and chlorophyll from the Norwegian Sea and the Atlantic sector of the Arctic Ocean. The revisions having most impact included adding diatoms to the diet of micro-zooplankton, increasing micro-zooplankton grazing rate and decreased silicate-to-nitrate ratio in diatoms. Model runs are performed both with a coarse- (~50 km) and higher-resolution (~15 km) model configuration, both covering the North Atlantic and Arctic Ocean. While the new model formulation improves the results in both the coarse- and high-resolution model, the nutrient bias is smaller in the high-resolution model, probably as a result of the better resolution of the main processes and with that improved circulation. The final revised version delivers satisfactory results for all three nutrients as well as improved result for chlorophyll in terms of the annual cycle amplitude. However, for chlorophyll the correlation with in-situ data remains relatively low. Besides the large uncertainties associated with observational data this is possibly caused by the fact that constant C / N and Chl / N ratios are implemented in the model.


2016 ◽  
Vol 30 (7) ◽  
pp. 1054-1068 ◽  
Author(s):  
George Tanski ◽  
Nicole Couture ◽  
Hugues Lantuit ◽  
Antje Eulenburg ◽  
Michael Fritz

Sign in / Sign up

Export Citation Format

Share Document