scholarly journals Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites

2018 ◽  
Vol 15 (11) ◽  
pp. 3421-3437 ◽  
Author(s):  
Donghai Wu ◽  
Philippe Ciais ◽  
Nicolas Viovy ◽  
Alan K. Knapp ◽  
Kevin Wilcox ◽  
...  

Abstract. Field measurements of aboveground net primary productivity (ANPP) in temperate grasslands suggest that both positive and negative asymmetric responses to changes in precipitation (P) may occur. Under normal range of precipitation variability, wet years typically result in ANPP gains being larger than ANPP declines in dry years (positive asymmetry), whereas increases in ANPP are lower in magnitude in extreme wet years compared to reductions during extreme drought (negative asymmetry). Whether the current generation of ecosystem models with a coupled carbon–water system in grasslands are capable of simulating these asymmetric ANPP responses is an unresolved question. In this study, we evaluated the simulated responses of temperate grassland primary productivity to scenarios of altered precipitation with 14 ecosystem models at three sites: Shortgrass steppe (SGS), Konza Prairie (KNZ) and Stubai Valley meadow (STU), spanning a rainfall gradient from dry to moist. We found that (1) the spatial slopes derived from modeled primary productivity and precipitation across sites were steeper than the temporal slopes obtained from inter-annual variations, which was consistent with empirical data; (2) the asymmetry of the responses of modeled primary productivity under normal inter-annual precipitation variability differed among models, and the mean of the model ensemble suggested a negative asymmetry across the three sites, which was contrary to empirical evidence based on filed observations; (3) the mean sensitivity of modeled productivity to rainfall suggested greater negative response with reduced precipitation than positive response to an increased precipitation under extreme conditions at the three sites; and (4) gross primary productivity (GPP), net primary productivity (NPP), aboveground NPP (ANPP) and belowground NPP (BNPP) all showed concave-down nonlinear responses to altered precipitation in all the models, but with different curvatures and mean values. Our results indicated that most models overestimate the negative drought effects and/or underestimate the positive effects of increased precipitation on primary productivity under normal climate conditions, highlighting the need for improving eco-hydrological processes in those models in the future.

2018 ◽  
Author(s):  
Donghai Wu ◽  
Philippe Ciais ◽  
Nicolas Viovy ◽  
Alan K. Knapp ◽  
Kevin Wilcox ◽  
...  

Abstract. Changes in precipitation variability are known to influence grassland growth. Field measurements of aboveground net primary productivity (ANPP) in temperate grasslands suggest that both positive and negative asymmetric responses to changes in precipitation may occur. Under normally variable precipitation regimes, wet years typically result in ANPP gains being larger than ANPP declines in dry years (positive asymmetry), whereas increases in ANPP are lower in magnitude in extreme wet years compared to reductions during extreme drought (negative asymmetry). Whether ecosystem models that couple carbon-water system in grasslands are capable of simulating these non-symmetrical ANPP responses is an unresolved question. In this study, we evaluated the simulated responses of temperate grassland primary productivity to scenarios of altered precipitation with fourteen ecosystem models at three sites, Shortgrass Steppe (SGS), Konza Prairie (KNZ) and Stubai Valley meadow (STU), spanning a rainfall gradient from dry to moist. We found that: (1) Gross primary productivity (GPP), NPP, ANPP and belowground NPP (BNPP) showed concave-down nonlinear response curves to altered precipitation in all the models, but with different curvatures and mean values. (2) The slopes of spatial relationships (across sites) between modeled primary productivity and precipitation were steeper than the temporal slopes obtained from inter-annual variations, consistent with empirical data. (3) The asymmetry of the responses of modeled primary productivity under normal inter-annual precipitation variability differed among models, and the median of the model-ensemble suggested a negative asymmetry across the three sites, in contrast to empirical studies. (4) The median sensitivity of modeled productivity to rainfall consistently suggested greater negative impacts with reduced precipitation than positive effects with increased precipitation under extreme conditions. This study indicates that most models overestimate the extent of negative drought effects and/or underestimate the impacts of increased precipitation on primary productivity under normal climate conditions, highlighting the need for improving eco-hydrological processes in models.


2011 ◽  
Vol 366 (1582) ◽  
pp. 3225-3245 ◽  
Author(s):  
Yadvinder Malhi ◽  
Christopher Doughty ◽  
David Galbraith

The allocation of the net primary productivity (NPP) of an ecosystem between canopy, woody tissue and fine roots is an important descriptor of the functioning of that ecosystem, and an important feature to correctly represent in terrestrial ecosystem models. Here, we collate and analyse a global dataset of NPP allocation in tropical forests, and compare this with the representation of NPP allocation in 13 terrestrial ecosystem models. On average, the data suggest an equal partitioning of allocation between all three main components (mean 34 ± 6% canopy, 39 ± 10% wood, 27 ± 11% fine roots), but there is substantial site-to-site variation in allocation to woody tissue versus allocation to fine roots. Allocation to canopy (leaves, flowers and fruit) shows much less variance. The mean allocation of the ecosystem models is close to the mean of the data, but the spread is much greater, with several models reporting allocation partitioning outside of the spread of the data. Where all main components of NPP cannot be measured, litterfall is a good predictor of overall NPP ( r 2 = 0.83 for linear fit forced through origin), stem growth is a moderate predictor and fine root production a poor predictor. Across sites the major component of variation of allocation is a shifting allocation between wood and fine roots, with allocation to the canopy being a relatively invariant component of total NPP. This suggests the dominant allocation trade-off is a ‘fine root versus wood’ trade-off, as opposed to the expected ‘root–shoot’ trade-off; such a trade-off has recently been posited on theoretical grounds for old-growth forest stands. We conclude by discussing the systematic biases in estimates of allocation introduced by missing NPP components, including herbivory, large leaf litter and root exudates production. These biases have a moderate effect on overall carbon allocation estimates, but are smaller than the observed range in allocation values across sites.


Geosciences ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 318
Author(s):  
Pamela Soto-Rogel ◽  
Juan-Carlos Aravena ◽  
Wolfgang Jens-Henrik Meier ◽  
Pamela Gross ◽  
Claudio Pérez ◽  
...  

Spatio-temporal patterns of climatic variability have effects on the environmental conditions of a given land territory and consequently determine the evolution of its productive activities. One of the most direct ways to evaluate this relationship is to measure the condition of the vegetation cover and land-use information. In southernmost South America there is a limited number of long-term studies on these matters, an incomplete network of weather stations and almost no database on ecosystems productivity. In the present work, we characterized the climate variability of the Magellan Region, southernmost Chilean Patagonia, for the last 34 years, studying key variables associated with one of its main economic sectors, sheep production, and evaluating the effect of extreme weather events on ecosystem productivity and sheep production. Our results show a marked multi-decadal character of the climatic variables, with a trend to more arid conditions for the last 8 years, together with an increase in the frequency of extreme weather events. Significant percentages of aboveground net primary productivity (ANPP) variance is explained by high precipitation, mesic temperatures, and low evapotranspiration. These conditions are, however, spatially distributed in the transition zone between deciduous forests and steppe and do not represent a general pattern for the entire region. Strong precipitation and wind velocity negatively affect lamb survival, while temperature and ANPP are positively correlated. The impact of extreme weather events on ANP and sheep production (SP) was in most of the cases significantly negative, with the exception of maximum temperature that correlated with an increase of ANPP, and droughts that showed a non-significant negative trend in ANPP. The examination of these relationships is urgent under the current scenario of climate change with the acceleration of the environmental trends here detected.


2019 ◽  
Vol 16 (19) ◽  
pp. 3853-3867
Author(s):  
Justine Ngoma ◽  
Maarten C. Braakhekke ◽  
Bart Kruijt ◽  
Eddy Moors ◽  
Iwan Supit ◽  
...  

Abstract. Understanding climate change effects on forests is important considering the role forests play in mitigating climate change. We studied the effects of changes in temperature, rainfall, atmospheric carbon dioxide (CO2) concentration, solar radiation, and number of wet days (as a measure of rainfall intensity) on net primary productivity (NPP) of the Zambian Zambezi teak forests along a rainfall gradient. Using 1960–1989 as a baseline, we projected changes in NPP for the end of the 21st century (2070–2099). We adapted the parameters of the dynamic vegetation model, LPJ-GUESS, to simulate the growth of Zambian forests at three sites along a moisture gradient receiving annual rainfall of between 700 and more than 1000 mm. The adjusted plant functional type was tested against measured data. We forced the model with contemporary climate data (1960–2005) and with climatic forecasts of an ensemble of five general circulation models (GCMs) following Representative Concentration Pathways (RCPs) RCP4.5 and RCP8.5. We used local soil parameter values to characterize texture and measured local tree parameter values for maximum crown area, wood density, leaf longevity, and allometry. The results simulated with the LPJ-GUESS model improved when we used these newly generated local parameters, indicating that using local parameter values is essential to obtaining reliable simulations at site level. The adapted model setup provided a baseline for assessing the potential effects of climate change on NPP in the studied Zambezi teak forests. Using this adapted model version, NPP was projected to increase by 1.77 % and 0.69 % at the wetter Kabompo and by 0.44 % and 0.10 % at the intermediate Namwala sites under RCP8.5 and RCP4.5 respectively, especially caused by the increased CO2 concentration by the end of the 21st century. However, at the drier Sesheke site, NPP would respectively decrease by 0.01 % and 0.04 % by the end of the 21st century under RCP8.5 and RCP4.5. The projected decreased NPP under RCP8.5 at the Sesheke site results from the reduced rainfall coupled with increasing temperature. We thus demonstrated that differences in the amount of rainfall received in a site per year influence the way in which climate change will affect forest resources. The projected increase in CO2 concentration would thus have more effects on NPP in high rainfall receiving areas, while in arid regions, NPP would be affected more by the changes in rainfall and temperature. CO2 concentrations would therefore be more important in forests that are generally not temperature- or precipitation-limited; however, precipitation will continue to be the limiting factor in the drier sites.


Sign in / Sign up

Export Citation Format

Share Document