scholarly journals Utilizing the Drake Passage Time-series to understand variability and change in subpolar Southern Ocean <i>p</i>CO<sub>2</sub>

2018 ◽  
Vol 15 (12) ◽  
pp. 3841-3855 ◽  
Author(s):  
Amanda R. Fay ◽  
Nicole S. Lovenduski ◽  
Galen A. McKinley ◽  
David R. Munro ◽  
Colm Sweeney ◽  
...  

Abstract. The Southern Ocean is highly under-sampled for the purpose of assessing total carbon uptake and its variability. Since this region dominates the mean global ocean sink for anthropogenic carbon, understanding temporal change is critical. Underway measurements of pCO2 collected as part of the Drake Passage Time-series (DPT) program that began in 2002 inform our understanding of seasonally changing air–sea gradients in pCO2, and by inference the carbon flux in this region. Here, we utilize available pCO2 observations to evaluate how the seasonal cycle, interannual variability, and long-term trends in surface ocean pCO2 in the Drake Passage region compare to that of the broader subpolar Southern Ocean. Our results indicate that the Drake Passage is representative of the broader region in both seasonality and long-term pCO2 trends, as evident through the agreement of timing and amplitude of seasonal cycles as well as trend magnitudes both seasonally and annually. The high temporal density of sampling by the DPT is critical to constraining estimates of the seasonal cycle of surface pCO2 in this region, as winter data remain sparse in areas outside of the Drake Passage. An increase in winter data would aid in reduction of uncertainty levels. On average over the period 2002–2016, data show that carbon uptake has strengthened with annual surface ocean pCO2 trends in the Drake Passage and the broader subpolar Southern Ocean less than the global atmospheric trend. Analysis of spatial correlation shows Drake Passage pCO2 to be representative of pCO2 and its variability up to several hundred kilometers away from the region. We also compare DPT data from 2016 and 2017 to contemporaneous pCO2 estimates from autonomous biogeochemical floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling project (SOCCOM) so as to highlight the opportunity for evaluating data collected on autonomous observational platforms. Though SOCCOM floats sparsely sample the Drake Passage region for 2016–2017 compared to the Drake Passage Time-series, their pCO2 estimates fall within the range of underway observations given the uncertainty on the estimates. Going forward, continuation of the Drake Passage Time-series will reduce uncertainties in Southern Ocean carbon uptake seasonality, variability, and trends, and provide an invaluable independent dataset for post-deployment assessment of sensors on autonomous floats. Together, these datasets will vastly increase our ability to monitor change in the ocean carbon sink.

2017 ◽  
Author(s):  
Amanda R. Fay ◽  
Nicole S. Lovenduski ◽  
Galen A. McKinley ◽  
David R. Munro ◽  
Colm Sweeney ◽  
...  

Abstract. The Southern Ocean is highly under-sampled for the purpose of assessing total carbon uptake and its variability. Since this region dominates the mean global ocean sink for anthropogenic carbon, understanding temporal change is critical. Underway measurements of pCO2 collected as part of the Drake Passage Time-series (DPT) program that began in 2002 inform our understanding of seasonally changing air-sea gradients in pCO2, and by inference the carbon flux in this region. Here, we utilize all available pCO2 observations collected in the subpolar Southern Ocean to evaluate how the seasonal cycle, interannual variability, and long-term trends in surface ocean pCO2 in the Drake Passage region compare to that of the broader subpolar Southern Ocean. Our results indicate that the Drake Passage is representative of the broader region in both seasonality and long term pCO2 trends shown through the agreement of timing and amplitude of seasonal cycles as well as trend magnitudes. The high temporal density of sampling by the DPT is critical to constraining estimates of the seasonal cycle of surface pCO2 in this region, as winter data remain sparse in areas outside of the Drake Passage. From 2002–2015, data show that carbon uptake has strengthened with surface ocean pCO2 trends less than the global atmospheric trend in the Drake Passage and the broader subpolar Southern Ocean. Analysis of spatial correlation shows Drake Passage pCO2 to be representative of pCO2 and its variability up to several hundred kilometers upstream of the region. We also compare DPT data from 2016 and early 2017 to contemporaneous pCO2 estimates from autonomous biogeochemical floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling project (SOCCOM) so as to highlight the opportunity for evaluating data collected on autonomous observational platforms. Though SOCCOM floats sparsely sample the Drake Passage region for 2016–2017, their pCO2 estimates typically fall within the range of underway observations. Going forward, continuation of the Drake Passage Time-series will reduce uncertainties in Southern Ocean carbon uptake seasonality, variability, and trends, and provide an invaluable independent dataset for post-deployment quality control of sensors on autonomous floats. Together, these datasets will vastly increase our ability to monitor change in the ocean carbon sink.


2021 ◽  
Author(s):  
Judith Hauck ◽  
Luke Gregor ◽  
Cara Nissen ◽  
Eric Mortenson ◽  
Seth Bushinsky ◽  
...  

&lt;p&gt;The Southern Ocean is the main gateway for anthropogenic CO&lt;sub&gt;2&lt;/sub&gt; into the ocean owing to the upwelling of old water masses with low anthropogenic CO&lt;sub&gt;2&lt;/sub&gt; concentration, and the transport of the newly equilibrated surface waters into the ocean interior through intermediate, deep and bottom water formation. Here we present first results of the Southern Ocean chapter of RECCAP2, which is the Global Carbon Project&amp;#8217;s second systematic study on Regional Carbon Cycle Assessment and Processes. In the Southern Ocean chapter, we aim to assess the Southern Ocean carbon sink 1985-2018 from a wide range of available models and data sets, and to identify patterns of regional and temporal variability, model limitations and future challenges.&lt;/p&gt;&lt;p&gt;We gathered global and regional estimates of the air-sea CO&lt;sub&gt;2&lt;/sub&gt; flux over the period 1985-2018 from global ocean biogeochemical models, surface pCO&lt;sub&gt;2&lt;/sub&gt;-based data products, and data-assimilated models. The analysis on the Southern Ocean quantified geographical patterns in the annual mean and seasonal amplitude of air-sea CO&lt;sub&gt;2&lt;/sub&gt; flux, with results presented here aggregated to the level of large-scale ocean biomes.&lt;/p&gt;&lt;p&gt;Considering the suite of observed and modelled estimates, we found that the subtropical seasonally stratified (STSS) biome stands out with the largest air-sea CO&lt;sub&gt;2&lt;/sub&gt; flux per area and a seasonal cycle with largest ocean uptake of CO&lt;sub&gt;2&lt;/sub&gt; in winter, whereas the ice (ICE) biome is characterized by a large ensemble spread and a pronounced seasonal cycle with the largest ocean uptake of CO&lt;sub&gt;2&lt;/sub&gt; in summer. Connecting these two, the subpolar seasonally stratified (SPSS) biome has intermediate flux densities (flux per area), and most models have difficulties simulating the seasonal cycle with strongest uptake during the summer months.&lt;/p&gt;&lt;p&gt;Our analysis also reveals distinct differences between the Atlantic, Pacific and Indian sectors of the aforementioned biomes. In the STSS, the Indian sector contributes most to the ocean carbon sink, followed by the Atlantic and then Pacific sectors. This hierarchy is less pronounced in the models than in the data-products. In the SPSS, only the Atlantic sector exhibits net CO&lt;sub&gt;2&lt;/sub&gt; uptake in all years, likely linked to strong biological production. In the ICE biome, the Atlantic and Pacific sectors take up more CO&lt;sub&gt;2&lt;/sub&gt; than the Indian sector, suggesting a potential role of the Weddell and Ross Gyres.&lt;/p&gt;&lt;p&gt;These first results confirm the global relevance of the Southern Ocean carbon sink and highlight the strong regional and interannual variability of the Southern Ocean carbon uptake in connection to physical and biogeochemical processes.&lt;/p&gt;


2021 ◽  
Author(s):  
Lavinia Patara ◽  
Torge Martin ◽  
Ivy Frenger ◽  
Jan Klaus Rieck ◽  
Chia-Te Chien

&lt;p&gt;Observational estimates point to pronounced changes of the Southern Ocean carbon uptake in the past decades, but the mechanisms are still not fully understood. In this study we assess physical drivers of the Southern Ocean carbon uptake variability in a suite of global ocean biogeochemistry models with 0.5&amp;#186;, 0.25&amp;#186; and 0.1&amp;#186; horizontal resolution as well as in a 3-member ensemble performed with an Earth System Model (ESM) sharing the same ocean biogeochemistry model. The ocean models show a positive trend of the Southern Ocean CO&lt;sub&gt;2&lt;/sub&gt; uptake in the past decades, with a weakening of its rate of increase in the 1990s. The 0.1&amp;#186; model exhibits the strongest trend in the Southern Ocean carbon uptake.&amp;#160;&lt;span&gt;Different physical drivers of the carbon up&lt;/span&gt;take variability and of its trends (such as changes in stratification, ventilation, overturning circulation, and SST) are analyzed. A particular focus of this study is to assess the role of open-ocean polynyas in driving Southern Ocean carbon uptake. Open-ocean polynyas in the Southern Ocean have pronounced climate fingerprints, such as reduced sea-ice coverage, heat loss by the ocean and enhanced bottom water formation, but their role for the Southern Ocean carbon uptake has been as yet little studied. To this end we analyze conjunctly ESM simulations and an ocean-only sensitivity experiment where open-ocean polynyas are artificially created by perturbing the Antarctic freshwater runoff. We find that enhanced CO&lt;sub&gt;2&lt;/sub&gt; outgassing takes place during the polynya opening, because old carbon-rich waters come in contact with the atmosphere. The concomitant increased uptake of anthropogenic CO&lt;sub&gt;2&lt;/sub&gt; partially compensates the CO&lt;sub&gt;2&lt;/sub&gt; outgassing. When the polynya closes, the ocean CO&lt;sub&gt;2&lt;/sub&gt; uptake increases significantly, possibly fueled by abundant nutrients and higher alkalinity brought to the surface during the previous convective phase. Our results suggest that open-ocean polynyas could have a significant impact on the Southern Ocean CO&lt;sub&gt;2&lt;/sub&gt; uptake and could thus modulate its decadal variability.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2013 ◽  
Vol 10 (9) ◽  
pp. 15033-15076 ◽  
Author(s):  
K. B. Rodgers ◽  
O. Aumont ◽  
S. E. Mikaloff Fletcher ◽  
Y. Plancherel ◽  
L. Bopp ◽  
...  

Abstract. Here we test the hypothesis that winds have an important role in determining the rate of exchange of CO2 between the atmosphere and ocean through wind stirring over the Southern Ocean. This is tested with a sensitivity study using an ad hoc parameterization of wind stirring in an ocean carbon cycle model. The objective is to identify the way in which perturbations to the vertical density structure of the planetary boundary in the ocean impacts the carbon cycle and ocean biogeochemistry. Wind stirring leads to reduced uptake of CO2 by the Southern Ocean over the period 2000–2006, with differences of order 0.9 Pg C yr−1 over the region south of 45° S. Wind stirring impacts not only the mean carbon uptake, but also the phasing of the seasonal cycle of carbon and other species associated with ocean biogeochemistry. Enhanced wind stirring delays the seasonal onset of stratification, and this has large impacts on both entrainment and the biological pump. It is also found that there is a strong sensitivity of nutrient concentrations exported in Subantarctic Mode Water (SAMW) to wind stirring. This finds expression not only locally over the Southern Ocean, but also over larger scales through the impact on advected nutrients. In summary, the large sensitivity identified with the ad hoc wind stirring parameterization offers support for the importance of wind stirring for global ocean biogeochemistry, through its impact over the Southern Ocean.


2017 ◽  
Author(s):  
Amanda R. Fay ◽  
Nicole S. Lovenduski ◽  
Galen A. McKinley ◽  
David R. Munro ◽  
Colm Sweeney ◽  
...  

2014 ◽  
Vol 11 (15) ◽  
pp. 4077-4098 ◽  
Author(s):  
K. B. Rodgers ◽  
O. Aumont ◽  
S. E. Mikaloff Fletcher ◽  
Y. Plancherel ◽  
L. Bopp ◽  
...  

Abstract. Here we test the hypothesis that winds have an important role in determining the rate of exchange of CO2 between the atmosphere and ocean through wind stirring over the Southern Ocean. This is tested with a sensitivity study using an ad hoc parameterization of wind stirring in an ocean carbon cycle model, where the objective is to identify the way in which perturbations to the vertical density structure of the planetary boundary in the ocean impacts the carbon cycle and ocean biogeochemistry. Wind stirring leads to reduced uptake of CO2 by the Southern Ocean over the period 2000–2006, with a relative reduction with wind stirring on the order of 0.9 Pg C yr−1 over the region south of 45° S. This impacts not only the mean carbon uptake, but also the phasing of the seasonal cycle of carbon and other ocean biogeochemical tracers. Enhanced wind stirring delays the seasonal onset of stratification, and this has large impacts on both entrainment and the biological pump. It is also found that there is a strong reduction on the order of 25–30% in the concentrations of NO3 exported in Subantarctic Mode Water (SAMW) to wind stirring. This finds expression not only locally over the Southern Ocean, but also over larger scales through the impact on advected nutrients. In summary, the large sensitivity identified with the ad hoc wind stirring parameterization offers support for the importance of wind stirring for global ocean biogeochemistry through its impact over the Southern Ocean.


2021 ◽  
Author(s):  
Rebecca Wright ◽  
Corinne Le Quéré ◽  
Erik Buitenhuis ◽  
Dorothee Bakker

&lt;p&gt;The Southern Ocean plays an important role in the uptake, transport and storage of carbon by the global oceans. These properties are dominated by the response to the rise in anthropogenic CO&lt;sub&gt;2&lt;/sub&gt; in the atmosphere, but they are modulated by climate variability and climate change. Here we explore the effect of climate variability and climate change on ocean carbon uptake and storage in the Southern Ocean. We assess the extent to which climate change may be distinguishable from the anthropogenic CO&lt;sub&gt;2&lt;/sub&gt; signal and from the natural background variability. We use a combination of biogeochemical ocean modelling and observations from the GLODAPv2020 database to detect climate fingerprints in dissolved inorganic carbon (DIC).&lt;/p&gt;&lt;p&gt;We conduct an ensemble of hindcast model simulations of the period 1920-2019, using a global ocean biogeochemical model which incorporates plankton ecosystem dynamics based on twelve plankton functional types. We use the model ensemble to isolate the changes in DIC due to rising anthropogenic CO&lt;sub&gt;2&lt;/sub&gt; alone and the changes due to climatic drivers (both climate variability and climate change), to determine their relative roles in the emerging total DIC trends and patterns. We analyse these DIC trends for a climate fingerprint over the past four decades, across spatial scales from the Southern Ocean, to basin level and down to regional ship transects. Highly sampled ship transects were extracted from GLODAPv2020 to obtain locations with the maximum spatiotemporal coverage, to reduce the inherent biases in patchy observational data. Model results were sampled to the ship transects to compare the climate fingerprints directly to the observational data.&lt;/p&gt;&lt;p&gt;Model results show a substantial change in DIC over a 35-year period, with a range of more than +/- 30 &amp;#181;mol/L. In the surface ocean, both anthropogenic CO&lt;sub&gt;2&lt;/sub&gt; and climatic drivers act to increase DIC concentration, with the influence of anthropogenic CO&lt;sub&gt;2&lt;/sub&gt; dominating at lower latitudes and the influence of climatic drivers dominating at higher latitudes. In the deep ocean, the anthropogenic CO&lt;sub&gt;2&lt;/sub&gt; generally acts to increase DIC except in the subsurface waters at lower latitudes, while climatic drivers act to decrease DIC concentration. The combined fingerprint of anthropogenic CO&lt;sub&gt;2&lt;/sub&gt; and climatic drivers on DIC concentration is for an increasing trend at the surface and decreasing trends in low latitude subsurface waters. Preliminary comparison of the model fingerprints to observational ship transects will also be presented.&lt;/p&gt;


2019 ◽  
Author(s):  
David D. Parrish ◽  
Richard G. Derwent ◽  
Simon O'Doherty ◽  
Peter G. Simmonds

Abstract. We present an approach to derive a systematic mathematical representation of the statistically significant features of the average long-term changes and seasonal cycle of concentrations of trace tropospheric species. The results for two illustrative data sets (time series of baseline concentrations of ozone and N2O at Mace Head, Ireland) indicate that a limited set of seven or eight parameter values provides this mathematical representation for both example species. This method utilizes a power series expansion to extract more information regarding the long-term changes than can be provided by oft-employed linear trend analyses. In contrast, the quantification of average seasonal cycles utilizes a Fourier series analysis that provides less detailed seasonal cycles than are sometimes represented as twelve monthly means; including that many parameters in the seasonal cycle representation is not usually statistically justified, and thereby adds unnecessary noise to the representation and prevents a clear analysis of the statistical uncertainty of the results. The approach presented here is intended to maximize the statistically significant information extracted from analyses of time series of concentrations of tropospheric species regarding their mean long-term changes and seasonal cycles, including non-linear aspects of the long-term trends. Additional implications, advantages and limitations of this approach are discussed.


2021 ◽  
Author(s):  
Geneviève Elsworth ◽  
Nicole Lovenduski ◽  
Karen McKinnon

&lt;p&gt;Internal climate variability plays an important role in the abundance and distribution of phytoplankton in the global ocean. Previous studies using large ensembles of Earth system models (ESMs) have demonstrated their utility in the study of marine phytoplankton variability. These ESM large ensembles simulate the evolution of multiple alternate realities, each with a different phasing of internal climate variability. However, ESMs may not accurately represent real world variability as recorded via satellite and in situ observations of ocean chlorophyll over the past few decades. Observational records of surface ocean chlorophyll equate to a single ensemble member in the large ensemble framework, and this can cloud the interpretation of long-term trends: are they externally forced, caused by the phasing of internal variability, or both? Here, we use a novel statistical emulation technique to place the observational record of surface ocean chlorophyll into the large ensemble framework. Much like a large initial condition ensemble generated with an ESM, the resulting synthetic ensemble represents multiple possible evolutions of ocean chlorophyll concentration, each with a different phasing of internal climate variability. We further demonstrate the validity of our statistical approach by recreating a ESM ensemble of chlorophyll using only a single ESM ensemble member. We use the synthetic ensemble to explore the interpretation of long-term trends in the presence of internal variability. Our results suggest the potential to explore this approach for other ocean biogeochemical variables.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document