scholarly journals Modeling rhizosphere carbon and nitrogen cycling in <i>Eucalyptus</i> plantation soil

2018 ◽  
Vol 15 (16) ◽  
pp. 4943-4954 ◽  
Author(s):  
Rafael Vasconcelos Valadares ◽  
Júlio César Lima Neves ◽  
Maurício Dutra Costa ◽  
Philip James Smethurst ◽  
Luiz Alexandre Peternelli ◽  
...  

Abstract. Vigorous Eucalyptus plantations produce 105 to 106 km ha−1 of fine roots that probably increase carbon (C) and nitrogen (N) cycling in rhizosphere soil. However, the quantitative importance of rhizosphere priming is still unknown for most ecosystems, including these plantations. Therefore, the objective of this work was to propose and evaluate a mechanistic model for the prediction of rhizosphere C and N cycling in Eucalyptus plantations. The potential importance of the priming effect was estimated for a typical Eucalyptus plantation in Brazil. The process-based model (ForPRAN – Forest Plantation Rhizosphere Available Nitrogen) predicts the change in rhizosphere C and N cycling resulting from root growth and consists of two modules: (1) fine-root growth and (2) C and N rhizosphere cycling. The model describes a series of soil biological processes: root growth, rhizodeposition, microbial uptake, enzymatic synthesis, depolymerization of soil organic matter, microbial respiration, N mineralization, N immobilization, microbial death, microbial emigration and immigration, and soil organic matter (SOM) formation. Model performance was quantitatively and qualitatively satisfactory when compared to observed data in the literature. Input variables with the most influence on rhizosphere N mineralization were (in order of decreasing importance) root diameter > rhizosphere thickness > soil temperature > clay concentration. The priming effect in a typical Eucalyptus plantation producing 42 m3 ha−1 yr−1 of shoot biomass, with assumed losses of 40 % of total N mineralized, was estimated to be 24.6 % of plantation N demand (shoot + roots + litter). The rhizosphere cycling model should be considered for adaptation to other forestry and agricultural production models where the inclusion of such processes offers the potential for improved model performance.

2017 ◽  
Author(s):  
Rafael V. Valadares ◽  
Júlio C. L. Neves ◽  
Maurício D. Costa ◽  
Philip J. Smethurst ◽  
Luiz A. Peternelli ◽  
...  

Abstract. Vigorous Eucalyptus plantations produce 105 to 106 km ha−1 of fine roots that probably increase carbon (C) and nitrogen (N) cycling in rhizosphere soil. However, the quantitative importance of rhizosphere priming is still unknown for most ecosystems, for instance Eucalyptus plantations. Therefore, the objective of this work was to propose and evaluate a mechanistic model for predicting rhizospheric C and N cycling in Eucalyptus plantations. The potential importance of the priming effect was estimated for a typical Eucalyptus plantation in Brazil. The process-based model (ForPRAN – Forest plantation rhizospheric available nitrogen) predicts the change in rhizosphere C and N cycling resulting from root growth and consists of two modules: (1) fine root growth, and (2) C and N rhizosphere cycling. The model describes a series of soil biological processes: root growth, rhizodeposition, microbial uptake, enzymatic synthesis, depolymerization of soil organic matter, respiration, mineralization, immobilization, microbial death, microbial emigration and immigration, SOM formation. Model performance was satisfactory quantitatively and qualitatively when compared to observed data in the literature. The input variables that most influenced N gain by rhizospheric mineralization were (in order of decreasing importance): root diameter > rhizosphere thickness > soil temperature > clay content. The priming effect in a typical Eucalyptus plantation producing 42 m3/ha/year of wood, with assumed losses of 40 % of the total N mineralized, was estimated to be 24.6 % of plantation N demand (shoot + roots + litter). The rhizosphere cycling model should be considered for adaptation to other forestry and agricultural production models where the inclusion of such processes offer the potential for improved model performance.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 69
Author(s):  
Iftekhar U. Ahmed ◽  
Dessie Assefa ◽  
Douglas L. Godbold

The depletion of soil organic matter (SOM) reserve after deforestation and subsequent management practices are well documented, but the impacts of land-use change on the persistence and vulnerability of storage C and N remain uncertain. We investigated soil organic C (SOC) and N stocks in a landscape of chrono-sequence natural forest, grazing/crop lands and plantation forest in the highlands of North-West Ethiopia. We hypothesized that in addition to depleting total C and N pools, multiple conversions of natural forest significantly change the relative proportion of labile and recalcitrant C and N fractions in soils, and thus affect SOM quality. To examine this hypothesis, we estimated depletion of SOC and N stocks and labile (1 & 2) and recalcitrant (fraction 3) C and N pools in soil organic matter following the acid hydrolysis technique. Our studies showed the highest loss of C stock was in grazing land (58%) followed by cropland (50%) and eucalyptus plantation (47%), while on average ca. 57% N stock was depleted. Eucalyptus plantation exhibited potential for soil C recovery, although not for N, after 30 years. The fractionation of SOM revealed that depletions of labile 1 C stocks were similar in grazing and crop lands (36%), and loss of recalcitrant C was highest in grazing soil (56%). However, increases in relative concentrations of labile fraction 1 in grazing land and recalcitrant C and N in cropland suggest the quality of these pools might be influenced by management activities. Also, the C:N ratio of C fractions and recalcitrant indices (RIC and RIN) clearly demonstrated that land conversion from natural forest to managed systems changes the inherent quality of the fractions, which was obscured in whole soil analysis. These findings underscore the importance of considering the quality of SOM when evaluating disturbance impacts on SOC and N stocks.


2017 ◽  
Vol 41 (1) ◽  
Author(s):  
Emanuelle Mercês Barros Soares ◽  
Ivo Ribeiro Silva ◽  
Nairam Félix Barros ◽  
Rafael Silva Teixeira ◽  
Sebastião Fonseca ◽  
...  

ABSTRACT The aim of the present study was to evaluate the effect of eucalyptus plantations on total organic C (TOC) and total N (TN) stocks as well as the C and N in the fulvic acid (FA), humic acid (HA), humin (HU), light organic matter (LOM) and microbial biomass (MB) fractions in soils with different textures in the eastern part of the state of Rio Grande do Sul, Brazil. Soil samples were collected from the 0-10-cm, 10-20-cm, 20-40-cm, 40-60-cm and 60-100-cm soil layers in a completely randomized experimental design with subdivided plots. Under the eucalyptus plantation, clay loam soil presented lower HA, HU and MB C stocks in the 0-100-cm soil layer compared to reference vegetation, whereas sandy soil presented higher and C and N in HA and LOM as well as C in MB. The observed increase in TOC in eucalyptus plantations was more pronounced in the surface soil layer (0-10 cm), i.e., approximately 150% higher than under native vegetation, which was probably due to the high contribution of the eucalyptus litter. Differences in C and N stocks in soil organic matter (SOM) fractions between eucalyptus plantations and areas with reference vegetation were more pronounced in sandy soil, showing the capacity of the clay fraction to protect SOM.


2021 ◽  
Vol 770 ◽  
pp. 144730
Author(s):  
Lili Rong ◽  
Xiaohu Wu ◽  
Jun Xu ◽  
Fengshou Dong ◽  
Xingang Liu ◽  
...  

2012 ◽  
Vol 42 (11) ◽  
pp. 1953-1964 ◽  
Author(s):  
Irene Fernandez ◽  
Juan Gabriel Álvarez-González ◽  
Beatríz Carrasco ◽  
Ana Daría Ruíz-González ◽  
Ana Cabaneiro

Forest ecosystems can act as C sinks, thus absorbing a high percentage of atmospheric CO2. Appropriate silvicultural regimes can therefore be applied as useful tools in climate change mitigation strategies. The present study analyzed the temporal changes in the effects of thinning on soil organic matter (SOM) dynamics and on soil CO2 emissions in radiata pine ( Pinus radiata D. Don) forests. Soil C effluxes were monitored over a period of 2 years in thinned and unthinned plots. In addition, soil samples from the plots were analyzed by solid-state 13C-NMR to determine the post-thinning SOM composition and fresh soil samples were incubated under laboratory conditions to determine their biodegradability. The results indicate that the potential soil C mineralization largely depends on the proportion of alkyl-C and N-alkyl-C functional groups in the SOM and on the microbial accessibility of the recalcitrant organic pool. Soil CO2 effluxes varied widely between seasons and increased exponentially with soil heating. Thinning led to decreased soil respiration and attenuation of the seasonal fluctuations. These effects were observed for up to 20 months after thinning, although they disappeared thereafter. Thus, moderate thinning caused enduring changes to the SOM composition and appeared to have temporary effects on the C storage capacity of forest soils, which is a critical aspect under the current climatic change scenario.


2021 ◽  
Author(s):  
Moritz Mohrlok ◽  
Victoria Martin ◽  
Alberto Canarini ◽  
Wolfgang Wanek ◽  
Michael Bahn ◽  
...  

&lt;p&gt;Soil organic matter (SOM) is composed of many pools with different properties (e.g. turnover times) which are generally used in biogeochemical models to predict carbon (C) dynamics. Physical fractionation methods are applied to isolate soil fractions that correspond to these pools. This allows the characterisation of chemical composition and C content of these fractions. There is still a lack of knowledge on how these individual fractions are affected by different climate change drivers, and therefore the fate of SOM remains elusive. We sampled soils from a multifactorial climate change experiment in a managed grassland in Austria four years after starting the experiment to investigate the response of SOM in physical soil fractions to temperature (eT: ambient and elevated by +3&amp;#176;C), atmospheric CO&lt;sub&gt;2&lt;/sub&gt;-concentration (eCO&lt;sub&gt;2&lt;/sub&gt;: ambient and elevated by +300 ppm) and to a future climate treatment (eT x eCO&lt;sub&gt;2&lt;/sub&gt;: +3&amp;#176;C and + 300 ppm). A combination of slaking and wet sieving was used to obtain three size classes: macro-aggregates (maA, &gt; 250 &amp;#181;m), micro-aggregates (miA, 63 &amp;#181;m &amp;#8211; 250 &amp;#181;m) and free silt &amp; clay (sc, &lt; 63 &amp;#181;m). In both maA and miA, four different physical OM fractions were then isolated by density fractionation (using sodium polytungstate of &amp;#961; = 1.6 g*cm&lt;sup&gt;-3&lt;/sup&gt;, ultrasonication and sieving): Free POM (fPOM), intra-aggregate POM (iPOM), silt &amp; clay associated OM (SCaOM) and sand-associated OM (SaOM). We measured C and N contents and isotopic composition by EA-IRMS in all fractions and size classes and used a Pyrolysis-GC/MS approach to assess their chemical composition. For eCO&lt;sub&gt;2&lt;/sub&gt; and eT x eCO&lt;sub&gt;2 &lt;/sub&gt;plots, an isotope mixing-model was used to calculate the proportion of recent C derived from the elevated CO&lt;sub&gt;2 &lt;/sub&gt;treatment. Total soil C and N did not significantly change with treatments.&amp;#160; eCO&lt;sub&gt;2&lt;/sub&gt; decreased the relative proportion of maA-mineral-associated C and increased C in fPOM and iPOM. About 20% of bulk soil C was represented by the recent C derived from the CO&lt;sub&gt;2&lt;/sub&gt; fumigation treatment. This significantly differed between size classes and density fractions (p &lt; 0.001), which indicates inherent differences in OM age and turnover. Warming reduced the amount of new C incorporated into size classes. We found that each size class and fraction possessed a unique chemical fingerprint, but this was not significantly changed by the treatments. Overall, our results show that while climate change effects on total soil C were not significant after 4 years, soil fractions showed specific effects. Chemical composition differed significantly between size classes and fractions but was unaffected by simulated climate change. This highlights the importance to separate SOM into differing pools, while including changes to the molecular composition might not be necessary for improving model predictions.&amp;#160;&amp;#160;&amp;#160;&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document