Annual burning of a tallgrass prairie inhibits C and N cycling in soil, increasing recalcitrant pyrogenic organic matter storage while reducing N availability

2015 ◽  
Vol 21 (6) ◽  
pp. 2321-2333 ◽  
Author(s):  
Jennifer L. Soong ◽  
M. Francesca Cotrufo
2018 ◽  
Vol 15 (16) ◽  
pp. 4943-4954 ◽  
Author(s):  
Rafael Vasconcelos Valadares ◽  
Júlio César Lima Neves ◽  
Maurício Dutra Costa ◽  
Philip James Smethurst ◽  
Luiz Alexandre Peternelli ◽  
...  

Abstract. Vigorous Eucalyptus plantations produce 105 to 106 km ha−1 of fine roots that probably increase carbon (C) and nitrogen (N) cycling in rhizosphere soil. However, the quantitative importance of rhizosphere priming is still unknown for most ecosystems, including these plantations. Therefore, the objective of this work was to propose and evaluate a mechanistic model for the prediction of rhizosphere C and N cycling in Eucalyptus plantations. The potential importance of the priming effect was estimated for a typical Eucalyptus plantation in Brazil. The process-based model (ForPRAN – Forest Plantation Rhizosphere Available Nitrogen) predicts the change in rhizosphere C and N cycling resulting from root growth and consists of two modules: (1) fine-root growth and (2) C and N rhizosphere cycling. The model describes a series of soil biological processes: root growth, rhizodeposition, microbial uptake, enzymatic synthesis, depolymerization of soil organic matter, microbial respiration, N mineralization, N immobilization, microbial death, microbial emigration and immigration, and soil organic matter (SOM) formation. Model performance was quantitatively and qualitatively satisfactory when compared to observed data in the literature. Input variables with the most influence on rhizosphere N mineralization were (in order of decreasing importance) root diameter > rhizosphere thickness > soil temperature > clay concentration. The priming effect in a typical Eucalyptus plantation producing 42 m3 ha−1 yr−1 of shoot biomass, with assumed losses of 40 % of total N mineralized, was estimated to be 24.6 % of plantation N demand (shoot + roots + litter). The rhizosphere cycling model should be considered for adaptation to other forestry and agricultural production models where the inclusion of such processes offers the potential for improved model performance.


2021 ◽  
Vol 770 ◽  
pp. 144730
Author(s):  
Lili Rong ◽  
Xiaohu Wu ◽  
Jun Xu ◽  
Fengshou Dong ◽  
Xingang Liu ◽  
...  

Soil Research ◽  
2020 ◽  
Vol 58 (5) ◽  
pp. 441 ◽  
Author(s):  
Jiwei Li ◽  
Zhouping Shangguan ◽  
Lei Deng

Forests associating with arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi may have distinct belowground carbon (C) and nitrogen (N) cycle processes. However, there are little available data providing evidence for the effects of trees associating with mycorrhizal type on belowground C and N cycling in forest ecosystems in China. Here, we collected a database of 26 variables related to belowground C and N cycling from 207 studies covering 209 sampling sites in China, to better understand the variations in belowground C and N cycling between the two mycorrhizal types in forest ecosystems along a climatic gradient. The AM forests had significantly lower soil total C and N contents, and soil microbial biomass C and N, than ECM forests, probably due to differences in litter quality (N and C/N) between AM and ECM forest types. In contrast, AM forests had significantly higher litter input, litter decomposition and soil respiration than ECM forests. Temperature and precipitation had significant positive effects on litter input and decomposition, soil total C and N contents, and soil respiration in AM and ECM forests. Overall, our results indicated that mycorrhizal type strongly affected belowground C and N cycle processes in forest ecosystems. Moreover, AM forests are likely more sensitive and ECM forests have a greater ability to adapt to global climate change.


Author(s):  
Nadine Citerne ◽  
Helen M. Wallace ◽  
Tom Lewis ◽  
Frédérique Reverchon ◽  
Negar Omidvar ◽  
...  

2020 ◽  
Vol 56 (7) ◽  
pp. 973-989
Author(s):  
Ai-Tian Ren ◽  
Lynette K. Abbott ◽  
Yinglong Chen ◽  
You-Cai Xiong ◽  
Bede S. Mickan

Abstract Global food wastage equates to about 1.3 billion tons per year, which causes serious environmental impacts. The objective of this study was to evaluate the influences of addition of digestate from food waste in comparison to a synthetic liquid urea ammonium nitrate solution on plant growth, rhizosphere bacterial community composition and diversity, and hyphal abundance of arbuscular mycorrhizal (AM) fungi. Plant and soil samples were collected at 25, 50, and 75 days after seedling emergence. Annual ryegrass growth was significantly increased by both liquid urea ammonium nitrate and digestate, and digestate was just as effective as liquid urea ammonium nitrate. Additionally, digestate (50 kg N ha−1) significantly increased AM fungal hyphae density. Liquid urea ammonium nitrate (50 kg N ha−1) significantly decreased AM fungal hyphae density compared with liquid urea ammonium nitrate (25 kg N ha−1) at DAE 75. Digestate and liquid urea ammonium nitrate applications significantly shifted the bacterial community composition and OTU richness and changed the abundance of microbial C and N-cycling genes, while application rates had no significant effect. Structural equation modeling showed that digestate and UAN addition both directly and indirectly affected bacterial, C and N cycling genes community composition; the indirect effects were related to increased soil NO3− content and reduced pH. This study showed that the use of digestate as a soil amendment can be environmentally effective and can provide a sustainable supply of nutrients that increases soil organic C. Moreover, the use of digestate can readily be incorporated into agricultural practices with potentially less impact on soil microflora diversity and function than conventional fertilizers.


2019 ◽  
Vol 577 ◽  
pp. 123926 ◽  
Author(s):  
Yingxue Xuan ◽  
Changyuan Tang ◽  
Yingjie Cao ◽  
Rui Li ◽  
Tao Jiang

Sign in / Sign up

Export Citation Format

Share Document