c and n pools
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 12)

H-INDEX

16
(FIVE YEARS 2)

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 69
Author(s):  
Iftekhar U. Ahmed ◽  
Dessie Assefa ◽  
Douglas L. Godbold

The depletion of soil organic matter (SOM) reserve after deforestation and subsequent management practices are well documented, but the impacts of land-use change on the persistence and vulnerability of storage C and N remain uncertain. We investigated soil organic C (SOC) and N stocks in a landscape of chrono-sequence natural forest, grazing/crop lands and plantation forest in the highlands of North-West Ethiopia. We hypothesized that in addition to depleting total C and N pools, multiple conversions of natural forest significantly change the relative proportion of labile and recalcitrant C and N fractions in soils, and thus affect SOM quality. To examine this hypothesis, we estimated depletion of SOC and N stocks and labile (1 & 2) and recalcitrant (fraction 3) C and N pools in soil organic matter following the acid hydrolysis technique. Our studies showed the highest loss of C stock was in grazing land (58%) followed by cropland (50%) and eucalyptus plantation (47%), while on average ca. 57% N stock was depleted. Eucalyptus plantation exhibited potential for soil C recovery, although not for N, after 30 years. The fractionation of SOM revealed that depletions of labile 1 C stocks were similar in grazing and crop lands (36%), and loss of recalcitrant C was highest in grazing soil (56%). However, increases in relative concentrations of labile fraction 1 in grazing land and recalcitrant C and N in cropland suggest the quality of these pools might be influenced by management activities. Also, the C:N ratio of C fractions and recalcitrant indices (RIC and RIN) clearly demonstrated that land conversion from natural forest to managed systems changes the inherent quality of the fractions, which was obscured in whole soil analysis. These findings underscore the importance of considering the quality of SOM when evaluating disturbance impacts on SOC and N stocks.


2021 ◽  
Vol 211 ◽  
pp. 104995
Author(s):  
Giuseppe Badagliacca ◽  
Vito Armando Laudicina ◽  
Gaetano Amato ◽  
Luigi Badalucco ◽  
Alfonso Salvatore Frenda ◽  
...  

2021 ◽  
Author(s):  
Anna De Marco ◽  
Speranza Claudia Panico ◽  
valeria memoli ◽  
Lucia Santorufo ◽  
Armando Zarrelli ◽  
...  

Abstract AimsPlant cover and microclimatic conditions can profoundly alter the balance between productivity and decay, with relevant effects on soil C and N pools. In this contest, the aim of the present study was to assess how, in Mediterranean areas, soil properties and C and N sequestration differs between afforested pine forests and natural shrublands in different microclimatic conditions at low and high elevations.MethodsThe study was performed along the soil profile distinguishing between the organic layers, fermentation and humic layers, and surface mineral soils. The comparison between plant covers and elevations were carried out for C and N pools and soluble fractions, molecular characterization by solid state 13C NMR of organic layers and by 1HNMR of soil soluble fractions, potential mineralization rates and microbial and fungal amounts.ResultsOur data confirm that coniferous tree species sequester C faster than shrubs and herbaceous species especially at low elevation under favourable microclimatic conditions. Soil C and N pools reflect changes in the chemical composition of the upper organic layers and of soil soluble organic matter. In pine forests, the higher concentration of N in the upper organic layer speeds up the N loss in the fermentative layer and stimulates humus formation and C accumulation at low elevations.ConclusionsPlant cover and microclimatic conditions drive the C sequestration rate and the soil organic matter stability. Chemical changes highlighted by nuclear magnetic resonance spectroscopy can clarify patterns of decay processes and help to make predictions in a climate change scenario.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 23 ◽  
Author(s):  
Eren Taskin ◽  
Roberta Boselli ◽  
Andrea Fiorini ◽  
Chiara Misci ◽  
Federico Ardenti ◽  
...  

Combining no-till and cover crops (NT + CC) as an alternative to conventional tillage (CT) is generating interest to build-up farming systems’ resilience while promoting climate change adaptation in agriculture. Our field study aimed to assess the impact of long-term NT + CC management and short-term water stress on soil microbial communities, enzymatic activities, and the distribution of C and N within soil aggregates. High-throughput sequencing (HTS) revealed the positive impact of NT + CC on microbial biodiversity, especially under water stress conditions, with the presence of important rhizobacteria (e.g., Bradyrhizobium spp.). An alteration index based on soil enzymes confirmed soil depletion under CT. C and N pools within aggregates showed an enrichment under NT + CC mostly due to C and N-rich large macroaggregates (LM), accounting for 44% and 33% of the total soil C and N. Within LM, C and N pools were associated to microaggregates within macroaggregates (mM), which are beneficial for long-term C and N stabilization in soils. Water stress had detrimental effects on aggregate formation and limited C and N inclusion within aggregates. The microbiological and physicochemical parameters correlation supported the hypothesis that long-term NT + CC is a promising alternative to CT, due to the contribution to soil C and N stabilization while enhancing the biodiversity and enzymes.


Ecosystems ◽  
2020 ◽  
Author(s):  
T. Persson ◽  
S. Andersson ◽  
J. Bergholm ◽  
T. Grönqvist ◽  
L. Högbom ◽  
...  

Abstract Liming can counteract acidification in forest soils, but the effects on soil C and N pools and fluxes over long periods are less well understood. Replicated plots in an acidic and N-rich 40-year-old Norway spruce (Picea abies) forest in SW Sweden (Hasslöv) were treated with 0, 3.45 and 8.75 Mg ha−1 of dolomitic lime (D0, D2 and D3) in 1984. Between 1984 and 2016, soil organic C to 30 cm depth increased by 28 Mg ha−1 (30% increase) in D0 and decreased by 9 Mg ha−1 (9.4% decrease) in D3. The change in D2 was not significant (+ 2 Mg ha−1). Soil N pools changed proportionally to those in soil C pools. The C and N changes occurred almost exclusively in the top organic layer. Non-burrowing earthworms responded positively to liming and stimulated heterotrophic respiration in this layer in both D2 and D3. Burrowing earthworms in D3 further accelerated C and N turnover and loss of soil. The high soil C and N loss at our relatively N-rich site differs from studies of N-poor sites showing no C and N loss. Earthworms need both high pH and N-rich food to reach high abundance and biomass. This can explain why liming of N-rich soils often results in decreasing C and N pools, whereas liming of N-poor soils with few earthworms will not show any change in soil C and N. Extractable nitrate N was always higher in D3 than in D2 and D0. After 6 years (1990), potential nitrification was much higher in D3 (197 kg N ha−1) than in D0 (36 kg N ha−1), but this difference decreased during the following years, when also the unlimed organic layers showed high nitrification potential. Our experiment finds that high-dose liming of acidic N-rich forest soils produces an initial pulse of soil heterotrophic respiration and increases in earthworm biomass, which together cause long-term declines in soil C and N pools.


Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1040
Author(s):  
R. Kasten Dumroese ◽  
Martin F. Jurgensen ◽  
Deborah S. Page-Dumroese

Research Highlights: This experiment compares a range of combinations of harvest, prescribed fire, and wildfire. Leveraging a 30-year-old forest management-driven experiment, we explored the recovery of woody species composition, regeneration of the charismatic forest tree species Larix occidentalis Nutt., and vegetation and soil carbon (C) and nitrogen (N) pools. Background and Objectives: Initiated in 1967, this experiment intended to explore combinations of habitat type phases and prescribed fire severity toward supporting regeneration of L. occidentalis. At onset of the experiment, a wildfire affected a portion of the 60 research plots, allowing for additional study. Our objective was to better understand silvicultural practices to support L. occidentalis regeneration and to better understand the subsequent impacts of silvicultural practices on C and N pools within the vegetation and soil. Materials and Methods: We categorized disturbance severity based on loss of forest floor depth; 11 categories were defined, including controls for the two habitat type phases involved. We collected abundance, biomass, and C and N concentrations for the herbaceous layer, shrubs, and trees using nested quadrats and 6 to 10 experimental units per disturbance category plot. Moreover, we systematically sampled woody residue from transects, and forest floor, soil wood, and mineral soil with a systematic grid of 16 soil cores per disturbance category plot. Results: We found that (1) disturbance severity affected shrub species richness, diversity, and evenness within habitat type phases; (2) L. occidentalis regenerates when fire is part of the disturbance; (3) N-fixing shrub species were more diverse in the hotter, drier plots; (4) recovery levels of C and N pools within the soil had surpassed or were closer to pre-disturbance levels than pools within the vegetation. Conclusions: We confirm that L. occidentalis regeneration and a diverse suite of understory shrub species can be supported by harvest and prescribed fire, particularly in southern and western aspects. We also conclude that these methods can regenerate L. occidentalis in cooler, moister sites, which may be important as this species’ climate niche shifts with climate change.


2020 ◽  
Vol 729 ◽  
pp. 138949 ◽  
Author(s):  
Xu Deng ◽  
Jiayang Yin ◽  
Lin Xu ◽  
Yongjun Shi ◽  
Guomo Zhou ◽  
...  

CATENA ◽  
2020 ◽  
Vol 185 ◽  
pp. 104332 ◽  
Author(s):  
Dong Wang ◽  
Zhensheng Chi ◽  
Benjiang Yue ◽  
Xudong Huang ◽  
Jing Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document