scholarly journals Dissolved organic matter characteristics of deciduous and coniferous forests with variable management: different at the source, aligned in the soil

2019 ◽  
Vol 16 (7) ◽  
pp. 1411-1432 ◽  
Author(s):  
Lisa Thieme ◽  
Daniel Graeber ◽  
Diana Hofmann ◽  
Sebastian Bischoff ◽  
Martin T. Schwarz ◽  
...  

Abstract. Dissolved organic matter (DOM) is part of the biogeochemical cycles of carbon and nutrients, carries pollutants and drives soil formation. The DOM concentration and properties along the water flow path through forest ecosystems depend on its sampling location and transformation processes. To improve our understanding of the effects of forest management, especially tree species selection and management intensity, on DOM concentrations and properties of samples from different ecosystem fluxes, we studied throughfall, stemflow, litter leachate and mineral soil solution at 26 forest sites in the three regions of the German Biodiversity Exploratories. We covered forest stands with three management categories (coniferous, deciduous age class and unmanaged beech forests). In water samples from these forests, we monitored DOC concentrations over 4 years and characterized the quality of DOM with UV-vis absorption, fluorescence spectroscopy combined with parallel factor analysis (PARAFAC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Additionally, we performed incubation-based biodegradation assays. Multivariate statistics revealed strong significant effects of ecosystem fluxes and smaller effects of main tree species on DOM quality. Coniferous forests differed from deciduous forests by showing larger DOC concentrations, more lignin- and protein-like molecules, and fewer tannin-like molecules in throughfall, stemflow, and litter leachate. Cluster analysis of FT-ICR-MS data indicated that DOM compositions, which varied in aboveground samples depending on tree species, become aligned in mineral soil. This alignment of DOM composition along the water flow path in mineral soil is likely caused by microbial production and consumption of DOM in combination with its interaction with the solid phase, producing a characteristic pattern of organic compounds in forest mineral soils. We found similarly pronounced effects of ecosystem fluxes on the biodegradability of DOM, but surprisingly no differences between deciduous and coniferous forests. Forest management intensity, mainly determined by biomass extraction, contribution of species, which are not site-adapted, and deadwood mass, did not influence DOC concentrations, DOM composition and properties significantly.

2018 ◽  
Author(s):  
Lisa Thieme ◽  
Daniel Graeber ◽  
Diana Hofmann ◽  
Sebastian Bischoff ◽  
Martin T. Schwarz ◽  
...  

Abstract. Dissolved organic matter (DOM) is part of the biogeochemical cycles of carbon and nutrients, carries pollutants and drives soil formation. The DOM concentration and properties along the water flow path through forest ecosystems depend on its origin and transformation processes. To improve our understanding of the effects of forest management, especially tree species selection and management intensity, on DOM concentrations and properties of samples from different ecosystem fluxes, we studied throughfall, stemflow, litter leachate and mineral soil solution at 26 forest sites in the three regions of the German Biodiversity Exploratories. We covered forest stands with three management categories (coniferous and deciduous age-class, unmanaged beech forests). In water samples from these forests, we monitored DOC concentrations over four years and characterized the quality of DOM with UV-vis absorption, fluorescence spectroscopy combined with parallel factor analysis (PARAFAC) and with Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). Additionally, we performed incubation-based biodegradation assays. Multivariate statistics revealed strong significant effects of origin of ecosystem fluxes and smaller effects of main tree species on DOM quality. Coniferous forests differed from deciduous forests by showing larger DOC concentrations, more lignin- and protein-like molecules, and less tannin-like molecules in throughfall, stemflow, and litter leachate. Cluster analysis of FT-ICR-MS data indicated that DOM compositions, which varied in aboveground samples depending on tree species, become aligned in mineral soil. This alignment of DOM composition along the water flow path in mineral soil is likely caused by microbial production and consumption of DOM in combination with its interaction with the solid phase, producing a characteristic pattern of organic compounds in forest mineral soils. We found similarly pronounced effects of ecosystem fluxes on the biodegradability of DOM, but surprisingly no differences between deciduous and coniferous forests. Forest management intensity, mainly determined by biomass extraction, contribution of species, which are not site-adapted, and deadwood mass, did not influence DOC concentrations, DOM composition and properties.


2021 ◽  
Vol 99 ◽  
pp. 80-89 ◽  
Author(s):  
Minru Liu ◽  
Yunkai Tan ◽  
Kejing Fang ◽  
Changya Chen ◽  
Zhihua Tang ◽  
...  

2009 ◽  
Vol 395 (3) ◽  
pp. 797-807 ◽  
Author(s):  
Gabriel Morales-Cid ◽  
Istvan Gebefugi ◽  
Basem Kanawati ◽  
Mourad Harir ◽  
Norbert Hertkorn ◽  
...  

2019 ◽  
Vol 218 ◽  
pp. 431-440 ◽  
Author(s):  
Dennys Leyva ◽  
Lilian V. Tose ◽  
Jacob Porter ◽  
Jeremy Wolff ◽  
Rudolf Jaffé ◽  
...  

In the present work, the advantages of ESI-TIMS-FT-ICR MS to address the isomeric content of dissolved organic matter are studied.


2020 ◽  
Author(s):  
Peter Herzsprung ◽  
Christin Wilske ◽  
Wolf von Tümpling ◽  
Norbert Kamjunke ◽  
Oliver J. Lechtenfeld

<p>Photochemical processing is a major transformation pathway for allochthonous and autochthonous dissolved organic matter (DOM). DOM consists of thousands or even millions of different molecules and the isomer-resolved identification molecular structures is still far from any analytical realization. The highest analytical resolution of DOM can be achieved on a molecular mass basis via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). With this technique, the molecular elemental compositions of thousands of DOM components can be assessed, given that they are extractable from water (via e.g. solid phase extraction, SPE-DOM) and ionizable (e.g. via electrospray ionization).</p><p>Increasing levels of DOC in drinking water reservoirs pose serious challenges for drinking water processing. Photochemical processes potentially influence the DOM quality in the reservoir water. The photo degradation and / or the photo production of DOM components in surface freshwater as function of cumulated radiation was rarely investigated. In order to fill this gap we performed an irradiation experiment with water from a shaded forest stream flowing into a large reservoir (Muldenberg, Germany). DOC concentration, UV absorption, excitation-emission-matrices (EEMs) including calculated PARAFAC components and fluorescence indices, and FT-ICR MS derived molecular formulas of SPE-DOM were recorded at 13 different time points. The cumulated radiation was recorded during six days of solar irradiation (sunny days in August at 50.401847 deg. latitude and 12.380528 deg. longitude). Changes in relative peak intensity of DOM components as function of cumulated radiation were evaluated both by Spearman`s rank correlation and linear regression.</p><p>We found components with different types of photo reaction behavior. Relative aliphatic components like C<sub>9</sub>H<sub>12</sub>O<sub>5</sub> were identified as photo products showing a monotonous mass peak intensity increase with irradiation time. Highly unsaturated and oxygen-rich components like C<sub>15</sub>H<sub>6</sub>O<sub>8</sub> showed a more or less monotonous intensity decrease indicating photo degradation. Many similar components were positively correlated to the humic-like fluorescence intensity and the humification index (HIX). The strong degradation of these components can explain the high loss of fluorescence intensity and the drop of the HIX in our experiment. As a result of the high temporal resolution in our experiment (i.e. intensity change as function of cumulated irradiation) we found another type of photo reaction. Components like C<sub>15</sub>H<sub>16</sub>O<sub>8</sub> showed first increasing and then decreasing intensity indicating the formation of intermediate products.</p><p>In general, the river DOM from the forested catchment area showed high potential for photochemical transformations which probably occur in the sunlight exposed predam of the drinking water reservoir.</p>


Sign in / Sign up

Export Citation Format

Share Document