scholarly journals Vegetation influence and environmental controls on greenhouse gas fluxes from a drained thermokarst lake in the western Canadian Arctic

2020 ◽  
Vol 17 (17) ◽  
pp. 4421-4441
Author(s):  
June Skeeter ◽  
Andreas Christen ◽  
Andrée-Anne Laforce ◽  
Elyn Humphreys ◽  
Greg Henry

Abstract. Thermokarst features are widespread in ice-rich regions of the circumpolar Arctic. The rate of thermokarst lake formation and drainage is anticipated to accelerate as the climate warms. However, it is uncertain how these dynamic features impact the terrestrial Arctic carbon cycle. Methane (CH4) and carbon dioxide (CO2) fluxes were measured during peak growing season using eddy covariance and chambers at Illisarvik, a 0.16 km2 thermokarst lake basin that was experimentally drained in 1978 on Richards Island, Northwest Territories, Canada. Vegetation in the basin differs markedly from the surrounding dwarf-shrub tundra and included patches of tall shrubs, grasses, and sedges with some bare ground and a small pond in the centre. During the peak growing season, temperature and wind conditions were highly variable, and soil water content decreased steadily. Basin-scaled net ecosystem CO2 exchange (NEE) measured by eddy covariance was −1.5 [CI95 %±0.2] g C−CO2 m-2d-1; NEE followed a marked diurnal pattern with no day-to-day trend during the study period. Variations in half-hourly NEE were primarily controlled by photosynthetic photon flux density and influenced by vapour pressure deficit, volumetric water content, and the presence of shrubs within the flux tower footprint, which varied with wind direction. Net methane exchange (NME) was low (8.7 [CI95 %±0.4] mgCH4m-2d-1) and had little impact on the growing season carbon balance of the basin. NME displayed high spatial variability, and sedge areas in the basin were the strongest source of CH4 while upland areas outside the basin were a net sink. Soil moisture and temperature were the main environmental factors influencing NME. Presently, Illisarvik is a carbon sink during the peak growing season. However, these results suggest that rates of growing season CO2 and CH4 exchange rates may change as the basin's vegetation community continues to evolve.

2020 ◽  
Author(s):  
June Skeeter ◽  
Andreas Christen ◽  
Andrée-Anne Laforce ◽  
Elyn Humphreys ◽  
Greg Henry

Abstract. Thermokarst features are widespread in ice-rich regions of the circumpolar Arctic. The rate of thermokarst lake formation and drainage is anticipated to accelerate as the climate warms. However, it is uncertain how these dynamic features impact the terrestrial Arctic carbon cycle. Methane (CH4) and carbon dioxide (CO2) fluxes were measured during peak growing season using eddy covariance and chambers at Illisarvik, a 0.16 km2 thermokarst lake basin that was experimentally drained in 1978 on Richards Island, Northwest Territories, Canada. Vegetation in the basin differs markedly from the surrounding dwarf-shrub tundra and included patches of tall shrubs, grasses and sedges with some bare ground and a small pond in the centre. During the study period, temperature and wind conditions were highly variable and soil water content decreased steadily. Basin scaled net ecosystem exchange (NEE) measured by eddy covariance was −1.5 [CI95 % ± 0.2] g C-CO2 m−2 d−1; NEE followed a marked diurnal pattern with no trend during the study period. NEE was primary controlled by photosynthetic photon flux density and influenced by vapor pressure deficit, volumetric water content and the presence of shrubs. By contrast, net methane exchange (NME) was low (8.7 [CI95 % ± 0.4] mg CH4 m−2 d−1 and had little impact on the carbon balance of the basin during the study period. NME displayed high spatial variability, sedge areas in the basin were the strongest source of CH4 while upland areas outside the basin were a net sink. Soil moisture and temperature were the main environmental factors influencing NME, having a positive and negative effect respectively.


2007 ◽  
Vol 4 (4) ◽  
pp. 2593-2640 ◽  
Author(s):  
P. Harley ◽  
J. Greenberg ◽  
Ü. Niinemets ◽  
A. Guenther

Abstract. Methanol is found throughout the troposphere, with average concentrations second only to methane among atmospheric hydrocarbons. Proposed global methanol budgets are highly uncertain, but all agree that at least 60% of the total source arises from the terrestrial biosphere and primary emissions from plants. However, the magnitude of these emissions is also highly uncertain, and the environmental factors which control them require further elucidation. Using a temperature-controlled leaf enclosure, we measured methanol emissions from leaves of six plant species by proton transfer reaction mass spectrometry, with simultaneous measurements of leaf evapotranspiration and stomatal conductance. Rates of emission at 30°C varied from 0.3 to 38 μg g (dry mass)−1 h−1, with higher rates measured on young leaves, consistent with the production of methanol via pectin demethylation in expanding foliage. On average, emissions increased by a factor of 2.4 for each 10°C increase in leaf temperature. At constant temperature, emissions were also correlated with co-varying incident photosynthetic photon flux density and rates of stomatal conductance. The data were analyzed using the emission model developed by Niinemets and Reichstein (2003a, b), with the incorporation of a methanol production term that increased exponentially with temperature. It was concluded that control of emissions, during daytime, was shared by leaf temperature and stomatal conductance, although rates of production may also vary diurnally in response to variations in leaf growth rate in expanding leaves. The model, which generally provided reasonable simulations of the measured data during the day, significantly overestimated emissions on two sets of measurements made through the night, suggesting that production rates of methanol were reduced at night, perhaps because leaf growth was reduced or possibly through a direct effect of light on production. Although the short-term dynamics of methanol emissions can be successfully modeled only if stomatal conductance and compound solubility are taken into account, emissions on longer time scales will be determined by rates of methanol production, controls over which remain to be investigated.


2013 ◽  
Vol 10 (5) ◽  
pp. 2885-2896 ◽  
Author(s):  
M. Strack ◽  
Y. C. A. Zuback

Abstract. Undisturbed peatlands represent long-term net sinks of carbon; however, peat extraction converts these systems into large and persistent sources of greenhouse gases. Although rewetting and restoration following peat extraction have taken place over the last several decades, very few studies have investigated the longer term impact of this restoration on peatland carbon balance. We determined the annual carbon balance of a former horticulturally-extracted peatland restored 10 yr prior to the study and compared these values to the carbon balance measured at neighboring unrestored and natural sites. Carbon dioxide (CO2) and methane (CH4) fluxes were measured using the chamber technique biweekly during the growing season from May to October 2010 and three times over the winter period. Dissolved organic carbon (DOC) export was measured from remnant ditches in the unrestored and restored sites. During the growing season the restored site had greater uptake of CO2 than the natural site when photon flux density was greater than 1000 μmol m−2 s−1, while the unrestored site remained a source of CO2. Ecosystem respiration was similar between natural and restored sites, which were both significantly lower than the unrestored site. Methane flux remained low at the restored site except from open water pools, created as part of restoration, and remnant ditches. Export of DOC during the growing season was 5.0 and 28.8 g m−2 from the restored and unrestored sites, respectively. Due to dry conditions during the study year all sites acted as net carbon sources with annual balance of the natural, restored and unrestored sites of 250.7, 148.0 and 546.6 g C m−2, respectively. Although hydrological conditions and vegetation community at the restored site remained intermediate between natural and unrestored conditions, peatland restoration resulted in a large reduction in annual carbon loss from the system resulting in a carbon balance more similar to a natural peatland.


2006 ◽  
Vol 42 (2) ◽  
pp. 147-164 ◽  
Author(s):  
J. C. RONQUIM ◽  
C. H. B. A. PRADO ◽  
P. NOVAES ◽  
J. I. FAHL ◽  
C. C. RONQUIM

Three cultivars of Coffea arabica, Catuaí Vermelho IAC 81, Icatu Amarelo IAC 2944 and Obatã IAC 1669–20, were evaluated in relation to leaf gas exchange and potential photochemical efficiency of photosystem II under field conditions on clear and cloudy days in the wet season in southeast Brazil. Independent of levels of irradiance, leaf water potential (υleaf) values were always higher than the minimum required to affect daily net photosynthesis (PN). PN, stomatal conductance (gs), leaf transpiration (E) and the index of photochemical efficiency (Fv/Fm) declined on a clear day in all cultivars. The depression of leaf gas exchange and Fv/Fm (specially around midday) caused a strong decrease (about 70 %) in daily carbon gain on a clear day. Under cloudless conditions, gs and PN were correlated with the air vapour pressure deficit (VPDair), but not with photosynthetic photon flux density (PPFD) values. On a cloudy day, the daily carbon gain was barely limited by PPFD below 800 μmol m−2 s−1, the Fv/Fm values showed a slight decrease around midday, and gs and PN were positively correlated with PPFD but not with VPDair. By contrast, irrespective of the contrasting irradiance conditions during the day, PN and E were correlated with gs.


2007 ◽  
Vol 4 (6) ◽  
pp. 1083-1099 ◽  
Author(s):  
P. Harley ◽  
J. Greenberg ◽  
Ü. Niinemets ◽  
A. Guenther

Abstract. Methanol is found throughout the troposphere, with average concentrations second only to methane among atmospheric hydrocarbons. Proposed global methanol budgets are highly uncertain, but all agree that at least 60% of the total source arises from the terrestrial biosphere and primary emissions from plants. However, the magnitude of these emissions is also highly uncertain, and the environmental factors which control them require further elucidation. Using a temperature-controlled leaf enclosure, we measured methanol emissions from leaves of six plant species by proton transfer reaction mass spectrometry, with simultaneous measurements of leaf evapotranspiration and stomatal conductance. Rates of emission at 30°C varied from 0.2 to 38 μg g (dry mass)−1 h−1, with higher rates measured on young leaves, consistent with the production of methanol via pectin demethylation in expanding foliage. On average, emissions increased by a factor of 2.3 for each 10°C increase in leaf temperature. At constant temperature, emissions were also correlated with co-varying incident photosynthetic photon flux density and rates of stomatal conductance. The data were analyzed using the emission model developed by Niinemets and Reichstein (2003a, b), with the incorporation of a methanol production term that increased exponentially with temperature. It was concluded that control of emissions, during daytime, was shared by leaf temperature and stomatal conductance, although rates of production may also vary diurnally in response to variations in leaf growth rate in expanding leaves. The model, which generally provided reasonable simulations of the measured data during the day, significantly overestimated emissions on two sets of measurements made through the night, suggesting that production rates of methanol were reduced at night, perhaps because leaf growth was reduced or possibly through a direct effect of light on production. Although the short-term dynamics of methanol emissions can be successfully modeled only if stomatal conductance and compound solubility are taken into account, emissions on longer time scales will be determined by rates of methanol production, controls over which remain to be investigated.


2012 ◽  
Vol 9 (12) ◽  
pp. 17203-17233 ◽  
Author(s):  
M. Strack ◽  
Y. C. A. Zuback

Abstract. Undisturbed peatlands represent long term net sinks of carbon; however, peat extraction converts these systems into large and persistent sources of greenhouse gases. Although rewetting and restoration following peat extraction have taken place over the last several decades, very few studies have investigated the longer term impact of this restoration on peatland carbon balance. We determined the annual carbon balance of a former horticulturally-extracted peatland restored 10 yr prior to the study and compared these values to the carbon balance measured at neighboring unrestored and natural sites. Carbon dioxide (CO2) and methane (CH4) fluxes were measured using the chamber technique biweekly during the growing season from May to October 2010 and three times over the winter period. Dissolved organic carbon (DOC) export was measured from remnant ditches in the unrestored and restored sites. During the growing season the restored site had greater uptake of CO2 than the natural site when photon flux density was greater than 1000 µmol m−2 s−1, while the unrestored site remained a source of CO2. Ecosystem respiration was similar between natural and restored sites, which were both significantly lower than the unrestored site. Methane flux remained low at the restored site except from open water pools, created as part of restoration, and remnant ditches. Export of DOC during the growing season was 5.0 and 28.8 g m−2 from the restored and unrestored sites, respectively. Due to dry conditions during the study year all sites acted as net carbon sources with annual balance of the natural, restored and unrestored sites of 250.7, 148.0 and 546.6 g C m−2, respectively. Although hydrological conditions and vegetation community at the restored site remained intermediate between natural and unrestored conditions, the site acted as a smaller source of carbon than the natural peatland suggesting that near natural carbon balance can be returned ~ 10 yr post-restoration.


1993 ◽  
Vol 41 (2) ◽  
pp. 195 ◽  
Author(s):  
CA Berryman ◽  
D Eamus ◽  
GA Duff

Seedlings of Maranthes corymbosa Blume, an evergreen tree of tropical Australia and Indonesia were grown for 32 weeks under conditions of ambient and elevated (700 μmol CO2 mol-1) CO2 in tropical northern Australia. Seedlings were exposed to ambient temperature, vapour pressure deficit and photon flux density fluctuations. Rates of germination and percentage germination were not affected by elevated CO2. Total plant biomass, height growth, total plant leaf area, numbers of leaves and branches and specific leaf weight were significantly increased by elevated CO2. Root:shoot ratio and foliar P, K, Mg, Mn and Ca levels were unaffected but foliar nitrogen levels were decreased by elevated CO2, Nutrient-use-efficiency was unaffected for phosphorus, magnesium, manganese, calcium and potassium but nitrogen-use-efficiency increased in response to elevated CO2.


1995 ◽  
Vol 22 (6) ◽  
pp. 1015 ◽  
Author(s):  
DW Sheriff

Gas exchange measurements were conducted on Pinus radiata to investigate relationships between these and leaf-air vapour pressure deficit, photosynthetic photon flux density, and foliar temperature, water potential and nutrition in the field. Multiple non-linear regressions indicated strong relationships between gas exchange and foliar [P] (but of no other nutrient), leaf-air vapour pressure deficit, photosynthetic photon flux density, foliar water potential and temperature. The final regression produced for relationships between gas exchange and these variables explained 81% of the variance in the data. Micro-climate and foliar data from another site were used to predict gas exchange using the regressions and calculated parameters. Good agreement was obtained between the predicted values and carbon assimilation measured at that site. The relationship was poorer for leaf conductance.


2021 ◽  
Author(s):  
Arash Rafat ◽  
Fereidoun Rezanezhad ◽  
William Quinton ◽  
Elyn Humphreys ◽  
Kara Webster ◽  
...  

<p>The world’s cold regions are experiencing some of the fastest warming, especially during the winter and shoulder seasons. Recent studies have further highlighted the significance of carbon dioxide (CO<sub>2</sub>) emissions during the non-growing season (NGS) to the annual carbon (C) budgets of northern peatlands. Because of the positive feedback of soil microbial respiration to warming, even at sub-zero temperatures, a warmer NGS may be expected to alter the C balance of peatlands, which are estimated to store about one-third of global terrestrial organic C stocks. However, estimates of NGS net ecosystem CO<sub>2</sub> exchange (NEE) of peatlands remain highly uncertain. In this study, we use a variable selection methodology and a global sensitivity analysis (GSA) to determine the most influential environmental variables affecting the NGS-NEE of CO<sub>2</sub> in a temperate Canadian peatland (Mer Bleue Bog; Ottawa, Canada). A data-driven machine learning model is trained on a 13-year (1998-2010) continuous record of eddy covariance flux measurements at the site. The model successfully reproduces the observed NGS-NEE CO<sub>2</sub> fluxes using only 7 variables: soil temperature, soil moisture, air temperature, wind direction and speed, net radiation, and upwelling photosynthetic photon flux density. Of these 7 input variables, NGS-NEE is most sensitive to changes in net radiation, likely through the latter’s strong linkages to variations in plant phenology and snow cover. We further predict how the future NGS-NEE of the Mer Bleue Bog will change under three climate scenarios (RCP2.6, RCP4.5, and RCP8.5). According to the projections, mean NEE during the NGS could increase by up to 103% by the end of the 21<sup>st</sup> century. Our results thus reinforce the urgent need for a comprehensive understanding of peatlands as evolving sources of atmospheric CO<sub>2</sub> in a warming world.</p>


1992 ◽  
Vol 117 (4) ◽  
pp. 678-684 ◽  
Author(s):  
Richard J. Campbell ◽  
Richard P. Marini

Percent instantaneous incident photosynthetic photon flux density (%INPPFD) was measured within an apple (Malus domestica Borkh.) canopy for various sky conditions and used to predict the percent cumulative incident photosynthetic photon density (PPD) for the last 10 weeks of the growing season (%CPPDLS) and the total growing season (%CPPDTS). Instantaneous measurements from overcast conditions were superior to measurements from clear or hazy conditions for the prediction of %CPPDLS in 1989 and 1990. A one-to-one relationship between %INPPFD and %CPPDLS was found for overcast conditions in both years, even though there was an 11% difference in total cumulative PPD between the years. The models had good predictive accuracy, with prediction coefficients of determination (R2Pred) >0.83 in both years (n = 30). %lNPPFD from overcast conditions also yielded accurate predictive models for %CPPDTS (R > 0.84, n = 30), which differed from the models for %CPPDLS. Predictive models (for both %CPPDLS and %CPPDTS) from %lNPPFD made before the canopy was fully developed differed from the models developed after canopy development was complete. The models still had good predictive accuracy, with R2Pred >0.76 (n = 30). Predictive models developed for cloudless conditions had inferior predictive accuracy (R2Pred = 0.49 to 0.80, n = 30) compared to models for overcast conditions. R2Pred were higher for hazy than for clear conditions. Time of day (1000 to 1400 hr) had no consistent effect on the development of predictive models for any weather condition. The most reliable models resulted from the average of several measurements within a day, particularly for cloudless conditions.


Sign in / Sign up

Export Citation Format

Share Document