scholarly journals Differences in instantaneous water use efficiency derived from post-carboxylation fractionation respond to the interaction of CO<sub>2</sub> concentrations and water stress in semi-arid areas

2016 ◽  
Author(s):  
Na Zhao ◽  
Ping Meng ◽  
Yabing He ◽  
Xinxiao Yu

Abstract. In the context of global warming attributable to the increasing levels of CO2, severe drought can be anticipated in areas with chronic water shortages (semi-arid areas), which necessitates research on the interaction between elevated atmospheric concentrations of CO2 and drought on plant photosynthetic discrimination. As δ13C of water-soluble compounds in leaves was depleted from extracellular CO2 to primary assimilates, no explanation has been offered for 13C fractionation before leaf-exported transportation of photosynthate. Either its variation according to the CO2 concentration and/or water stress gradients, or their interaction have not yet been identified. Therefore, saplings of species typical to a semi-arid area of Northern China that have similar growth status – Platycladus orientalis and Quercus variabilis – were selected and cultivated in growth chambers with orthogonal treatments (four CO2 concentrations [CO2] × five soil volumetric water contents (SWC)). The δ13C of water-soluble compounds extracted from leaves of potted saplings was measured to determine the instantaneous water use efficiency (WUEcp) after cultivation. Instantaneous water use efficiency derived from gas exchange (WUEge) was integrated to estimate differences in δ13C signal variation before leaf-exported translocation of primary assimilates. The WUEge of the two saplings both decreased with increased soil moisture, and increased with elevated [CO2] at 35 %–80 % of Field Capacity (FC) by strengthening photosynthetic capacity and reducing transpiration. Differences in instantaneous water use efficiency (iWUE) according to distinct environmental changes differed between the species. The WUEge of P. orientalis was significantly greater than that of Q. variabilis, while the opposite results were obtained in a comparison of the WUEcp of the two species. The differences between WUEge and WUEcp were clearly species-specific, as demonstrated in the interaction of [CO2] and SWC. Rising [CO2] coupled with moistened soil generated increasing disparities between WUEge and WUEcp in P. orientalis with an amplitude of 0.0328 ‰–0.0472 ‰. Further, the differences between WUEge and WUEcp of Q. variabilis increased as CO2 concentration increased and water stress alleviated (0.0384 ‰–0.0466 ‰). The 13C fractionation in post-photosynthesis was linearly dependent on gs, and was attributed to environmental variation. Thus, cautious descriptions of the magnitude and environmental dependence of apparent post-carboxylation fractionation are worth our attention in photosynthetic fractionation.

2017 ◽  
Vol 14 (14) ◽  
pp. 3431-3444 ◽  
Author(s):  
Na Zhao ◽  
Ping Meng ◽  
Yabing He ◽  
Xinxiao Yu

Abstract. In the context of global warming attributable to the increasing levels of CO2, severe drought may be more frequent in areas that already experience chronic water shortages (semiarid areas). This necessitates research on the interactions between increased levels of CO2 and drought and their effect on plant photosynthesis. It is commonly reported that 13C fractionation occurs as CO2 gas diffuses from the atmosphere to the substomatal cavity. Few researchers have investigated 13C fractionation at the site of carboxylation to cytoplasm before sugars are exported outward from the leaf. This process typically progresses in response to variations in environmental conditions (i.e., CO2 concentrations and water stress), including in their interaction. Therefore, saplings of two typical plant species (Platycladus orientalis and Quercus variabilis) from semiarid areas of northern China were selected and cultivated in growth chambers with orthogonal treatments (four CO2 concentration ([CO2])  ×  five soil volumetric water content (SWC)). The δ13C of water-soluble compounds extracted from leaves of saplings was determined for an assessment of instantaneous water use efficiency (WUEcp) after cultivation. Instantaneous water use efficiency derived from gas-exchange measurements (WUEge) was integrated to estimate differences in δ13C signal variation before leaf-level translocation of primary assimilates. The WUEge values in P. orientalis and Q.  variabilis both decreased with increased soil moisture at 35–80 % of field capacity (FC) and increased with elevated [CO2] by increasing photosynthetic capacity and reducing transpiration. Instantaneous water use efficiency (iWUE) according to environmental changes differed between the two species. The WUEge in P. orientalis was significantly greater than that in Q. variabilis, while an opposite tendency was observed when comparing WUEcp between the two species. Total 13C fractionation at the site of carboxylation to cytoplasm before sugar export (total 13C fractionation) was species-specific, as demonstrated in the interaction of [CO2] and SWC. Rising [CO2] coupled with moistened soil generated increasing disparities in δ13C between water-soluble compounds (δ13CWSC) and estimates based on gas-exchange observations (δ13Cobs) in P. orientalis, ranging between 0.0328 and 0.0472 ‰. Differences between δ13CWSC and δ13Cobs in Q. variabilis increased as [CO2] and SWC increased (0.0384–0.0466 ‰). The 13C fractionation from mesophyll conductance (gm) and post-carboxylation both contributed to the total 13C fractionation that was determined by δ13C of water-soluble compounds and gas-exchange measurements. Total 13C fractionation was linearly dependent on stomatal conductance, indicating that post-carboxylation fractionation could be attributed to environmental variation. The magnitude and environmental dependence of apparent post-carboxylation fractionation is worth our attention when addressing photosynthetic fractionation.


2016 ◽  
Vol 178 ◽  
pp. 137-147 ◽  
Author(s):  
Yanhao Lian ◽  
Shahzad Ali ◽  
Xudong Zhang ◽  
Tianlu Wang ◽  
Qi Liu ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3019
Author(s):  
Yuan-Yuan Tang ◽  
Jian-Ping Chen ◽  
Feng Zhang ◽  
Shi-Song Yuan

Water Use Efficiency (WUE) is an important indicator of the carbon cycle in the hydrological and ecological system. It is of great significance to study the response of different hydrological processes to climate and to understand ecosystem carbon sink. However, little is known about the effects and mechanisms of precipitation and temperature on the WUE of different hydrological processes. Thus, three kinds of WUEs (GPP/E (eWUE), GPP/Et (tWUE), and GPP/P (pWUE)) are defined for three different hydrological indicators in semi-arid areas in this study in order to reveal the variation pattern of WUEs based on hydrological indicators and their response to climate. We found that in the past 15 years, the seasonal fluctuation of evapotranspiration in arid areas was large, and the spatial difference of WUE of different hydrological processes was obvious. In semi-arid areas, temperature had a significant effect on WUE (about 68–81%). However, precipitation had a lag effect on WUEs, and the negative impact of precipitation has a great influence (about 84–100%). Secondly, the threshold values of precipitation to WUEs (200 or 300 mm) and temperature to WUEs (2 or 7 °C) are also different from previous studies. This study advances our understanding of the influence of different hydrological processes on ecosystem carbon and climate.


Sign in / Sign up

Export Citation Format

Share Document