Review on 'Soil moisture control on sap-flow response to biophysical factors in a desert-shrub 1 species, Artemisia ordosica' by Zha et al

2016 ◽  
Author(s):  
Anonymous
2016 ◽  
Author(s):  
Tianshan Zha ◽  
Duo Qian ◽  
Xin Jia ◽  
Yujie Bai ◽  
Yun Tian ◽  
...  

Abstract. Current understanding of acclimation processes in desert-shrub species to drought stress in dryland ecosystems is still incomplete. In this study, we measured sap flow in Artemisia ordosica and associated environmental variables throughout the growing seasons of 2013–2014 (May–September period of each year) to better understand the environmental controls on the temporal dynamics of sap flow. We found that the occurrence of drought in the dry year of 2013 during the leaf-expansion and leaf-expanded periods caused sap flow per leaf area (Js) to decline significantly, resulting in a sizable drop in transpiration. Sap flow per leaf area correlated positively with radiation (Rs), air temperature (T), and vapor pressure deficit (VPD), when volumetric soil water content (VWC) was > 0.11 m3 m−3. Diurnal Js was generally ahead of Rs by as much as 6 hours. This lag time, however, decreased with increasing VWC. Relative response of Js to the environmental variables (i.e., Rs, T, and VPD) varied with VWC, Js being more biologically controlled with low decoupling coefficient and thus being less sensitive to the environmental variables during dry periods. According to this study, soil moisture is shown to control sap-flow (and, therefore, plant-transpiration) response in Artemisia ordosica to diurnal variations in biophysical factors. The findings of this study add to the knowledge of acclimation processes in desert-shrub species under drought-associated stress. This knowledge is essential to model desert-shrub-ecosystem functioning under changing climatic conditions.


2017 ◽  
Vol 14 (19) ◽  
pp. 4533-4544 ◽  
Author(s):  
Tianshan Zha ◽  
Duo Qian ◽  
Xin Jia ◽  
Yujie Bai ◽  
Yun Tian ◽  
...  

Abstract. The current understanding of acclimation processes in desert-shrub species to drought stress in dryland ecosystems is still incomplete. In this study, we measured sap flow in Artemisia ordosica and associated environmental variables throughout the growing seasons of 2013 and 2014 (May–September period of each year) to better understand the environmental controls on the temporal dynamics of sap flow. We found that the occurrence of drought in the dry year of 2013 during the leaf-expansion and leaf-expanded periods caused sap flow per leaf area (Js) to decline significantly, resulting in transpiration being 34 % lower in 2013 than in 2014. Sap flow per leaf area correlated positively with radiation (Rs), air temperature (T), and water vapor pressure deficit (VPD) when volumetric soil water content (VWC) was greater than 0.10 m3 m−3. Diurnal Js was generally ahead of Rs by as much as 6 hours. This time lag, however, decreased with increasing VWC. The relative response of Js to the environmental variables (i.e., Rs, T, and VPD) varied with VWC, Js being more strongly controlled by plant-physiological processes during periods of dryness indicated by a low decoupling coefficient and low sensitivity to the environmental variables. According to this study, soil moisture is shown to control sap-flow (and, therefore, plant-transpiration) response in Artemisia ordosica to diurnal variations in biophysical factors. This species escaped (acclimated to) water limitations by invoking a water-conservation strategy with the regulation of stomatal conductance and advancement of Js peaking time, manifesting in a hysteresis effect. The findings of this study add to the knowledge of acclimation processes in desert-shrub species under drought-associated stress. This knowledge is essential in modeling desert-shrub-ecosystem functioning under changing climatic conditions.


2021 ◽  
pp. 1-48
Author(s):  
Olivia Martius ◽  
Kathrin Wehrli ◽  
Marco Rohrer

AbstractThree sets of model experiments are performed with the Community Earth System Model to study the role of soil moisture anomalies as a boundary forcing for the formation of upper-level Rossby wave patterns during Southern Hemisphere summer. In the experiments, soil moisture over Australia is set to ±1STD of an ERA-Interim reanalysis derived soil moisture reconstruction for the years 2009 to 2016 and 50 ensemble members are run. The local response is a positive heating anomaly in the dry simulations that results in a thermal low-like circulation anomaly with an anomalous surface low and upper-level anticyclone. Significant differences in convective rainfall over Australia are related to differences in convective instability and associated with changes in near surface moisture and moisture advection patterns. A circum-hemispheric flow response is identified both in the upper-level flow and in the surface storm tracks that overall resembles a positive Southern Annular Mode-like flow anomaly in the dry simulations. The structure of this atmospheric response strongly depends on the background flow. The results point to a modulation of the hemispheric flow response to the forcing over Australia by the El Niño Southern Oscillation. Significant changes of precipitation over the Maritime continent and South Africa are found and significant differences in the frequency of surface cyclones are present all along the storm tracks.


2021 ◽  
Author(s):  
Eva Messinger ◽  
Heinz Coners ◽  
Dietrich Hertel ◽  
Christoph Leuschner

<p>Climate models predict hotter and dryer summers in Germany, with longer periods of extreme droughts like in summer 2018. How does this affect the water uptake and transport in tree roots growing in the top- and subsoil?</p><p>In summer 2018 and 2019 we measured the water transport in fine roots (<5mm) of European Beech on tertiary sand and triassic sandstone up to 2 m depth. We adapted the well-established HRM technique to enable measurements of very small sap flow rates in small roots. Thus, we measured the water transport as a temperature ratio of a stretching heat pulse.</p><p>Relating sap flow to root surface area, root depth, anatomy, soil moisture, and VPD allows for interesting insights in tree water uptake rates: Where are the limits of drought intensity and duration, for water uptake and recovery of small roots? Are there differences in the function of top- and subsoil roots? Are roots specialized for water transport or nutrient uptake? The investigated data gives a first hint on how the water transport in Beech roots differs with changes in the soil moisture and VPD under changing climate.</p>


2021 ◽  
Author(s):  
Erin Nicholls ◽  
Gordon Drewitt ◽  
Sean Carey

<p>As a result of altitude and latitude amplified impacts of climate change, widespread alterations in vegetation composition, density and distribution are widely observed across the circumpolar north. The influence of this vegetation change on the timing and magnitude of hydrological fluxes is uncertain, and is confounded by changes driven by increased temperatures and altered precipitation (P) regimes. In northern alpine catchments, quantification of total evapotranspiration (ET) and evaporative partitioning across a range of elevation-based ecosystems is critical for predicting water yield under change, yet remains challenging due to coupled environmental and phenological controls on transpiration (T). In this work, we analyze 6 years of surface energy balance, ET, and sap flow data at three sites along an elevational gradient in a subarctic, alpine catchment near Whitehorse, Yukon Territory, Canada. These sites provide a space-for-time evaluation of vegetation shifts and include: 1) a low-elevation boreal white spruce forest (~20 m), 2) a mid-elevation subalpine taiga comprised of tall willow (Salix) and birch (Betula) shrubs (~1-3 m) and 3) a high-elevation subalpine taiga with shorter shrub cover (< 0.75 m) and moss, lichen, and bare rock. Specific objectives are to 1) evaluate interannual ET dynamics within and among sites under different precipitation regimes , and 2) assess the influence of vegetation type and structure, phenology, soil and meteorological controls on ET dynamics and partitioning.  Eddy covariance and sap flow sensors operated year-round at the forest and during the growing season at the mid-elevation site on both willow and birch shrubs for two years. Growing season ET decreased and interannual variability increased with elevation, with June to August ET totals of 250 (±3) mm at Forest, 192 (±9) mm at the tall shrub site, and 180 (± 26) mm at the short shrub site. Comparatively, AET:P ratios were the highest and most variable at the forest (2.4 ± 0.3) and similar at the tall and short shrub (1.2 ± 0.1).  At the forest, net radiation was the primary control on ET, and 55% was direct T from white spruce. At the shrub sites, monthly ET rates were similar except during the peak growing season when T at the tall shrub site comprised 89% of ET, resulting in greater total water loss. Soil moisture strongly influenced T at the forest, suggesting the potential for moisture stress, yet not at the shrub sites where there was no moisture limitation. Results indicate that elevation advances in treeline will increase overall ET and lower interannual variability; yet the large water deficit during summer implies a strong reliance on early spring snowmelt recharge to sustain soil moisture. Changes in shrub height and density will increase ET primarily during the mid-growing season. This work supports the assertion that predicted changes in vegetation type and structure will have a considerable impact on water partitioning in northern regions, and will also vary in a multifaceted way in response to changing temperature and P regimes.  </p>


2014 ◽  
Vol 11 (2) ◽  
pp. 259-268 ◽  
Author(s):  
B. Wang ◽  
T. S. Zha ◽  
X. Jia ◽  
B. Wu ◽  
Y. Q. Zhang ◽  
...  

Abstract. The current understanding of the responses of soil respiration (Rs) to soil temperature (Ts) and soil moisture is limited for desert ecosystems. Soil CO2 efflux from a desert shrub ecosystem was measured continuously with automated chambers in Ningxia, northwest China, from June to October 2012. The diurnal responses of Rs to Ts were affected by soil moisture. The diel variation in Rs was strongly related to Ts at 10 cm depth under moderate and high volumetric soil water content (VWC), unlike under low VWC. Ts typically lagged Rs by 3–4 h. However, the lag time varied in relation to VWC, showing increased lag times under low VWC. Over the seasonal cycle, daily mean Rs was correlated positively with Ts, if VWC was higher than 0.08 m3 m−3. Under lower VWC, it became decoupled from Ts. The annual temperature sensitivity of Rs (Q10) was 1.5. The short-term sensitivity of Rs to Ts varied significantly over the seasonal cycle, and correlated negatively with Ts and positively with VWC. Our results highlight the biological causes of diel hysteresis between Rs and Ts, and that the response of Rs to soil moisture may result in negative feedback to climate warming in desert ecosystems. Thus, global carbon cycle models should account the interactive effects of Ts and VWC on Rs in desert ecosystems.


1995 ◽  
Vol 75 (1) ◽  
pp. 99-103 ◽  
Author(s):  
C. S. Tan ◽  
B. R. Buttery

Using heat-balance stem flow gauges, we were able to measure directly and continuously the sap flow rates in two pairs of soybean [Glycine max (L.) Merr.] isolines differing in stomatal frequency. Plants with high stomatal frequency transpired significantly more water than the low stomatal frequency plants at high soil moisture levels. Under low soil moisture levels, the water use rate decreased greatly for the high stomatal frequency plants. Plants with low stomatal frequency were able to maintain greater sap flow rates than those with high stomatal frequency. Higher leaf temperatures associated with the low stomatal frequency plants were likely due to lower transpiration rates which reduced evaporative cooling especially under well-watered conditions. Key words:Glycine max (L.) Merr., transpiration, water deficits


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yongsheng Yang ◽  
Chongfeng Bu ◽  
Xingmin Mu ◽  
Hongbo Shao ◽  
Kankan Zhang

To better understand the effects of biological soil crusts (BSCs) on soil moisture and wind erosion and study the necessity and feasibility of disturbance of BSCs in the Mu Us sandland, the effects of four treatments, including moss-dominated crusts alone,Artemisia ordosicaalone, bare sand, andArtemisia ordosicacombined with moss-dominated crusts, on rainwater infiltration, soil moisture, and annual wind erosion were observed. The major results are as follows. (1) The development of moss-dominated crusts exacerbated soil moisture consumption and had negative effects on soil moisture in the Mu Us sandland. (2) Moss-dominated crusts significantly increased soil resistance to wind erosion, and when combined withArtemisia ordosica, this effect became more significant. The contribution of moss-dominated crusts underArtemisia ordosicawas significantly lower than that of moss-dominated crusts alone in sites where vegetative coverage > 50%. (3) Finally, an appropriate disturbance of moss-dominated crusts in the rainy season in sites with high vegetative coverage improved soil water environment and vegetation succession, but disturbance in sites with little or no vegetative cover should be prohibited to avoid the exacerbation of wind erosion.


Sign in / Sign up

Export Citation Format

Share Document