scholarly journals The Influence of Environmental Variability on the Biogeography of Coccolithophores and Diatoms in the Great Calcite Belt

Author(s):  
Helen E. K. Smith ◽  
Alex J. Poulton ◽  
Rebecca Garley ◽  
Jason Hopkins ◽  
Laura C. Lubelczyk ◽  
...  

Abstract. The Great Calcite Belt (GCB) of the Southern Ocean is a region of elevated summertime upper ocean calcite concentration derived from coccolithophores, despite the region being known for its diatom predominance. The overlap of two major phytoplankton groups, coccolithophores and diatoms, in the dynamic frontal systems characteristic of this region, provides an ideal setting to study environmental influences on the distribution of different species within these taxonomic groups. Water samples for phytoplankton enumeration were collected from the upper 30 m during two cruises, the first to the South Atlantic sector (Jan–Feb 2011; 60 °W–15 °E and 36–60 °S) and the second in the South Indian sector (Feb–Mar 2012; 40–120 °E and 36–60 °S). The species composition of coccolithophores and diatoms was examined using scanning electron microscopy at 27 stations across the Sub-Tropical, Polar, and Sub-Antarctic Fronts. The influence of environmental parameters, such as sea-surface temperature (SST), salinity, carbonate chemistry (i.e., pH, partial pressure of CO2 (pCO2), alkalinity, dissolved inorganic carbon), macro-nutrients (i.e., nitrate + nitrite, phosphate, silicic acid, ammonia), and mixed layer average irradiance, on species composition across the GCB, was assessed statistically. Nanophytoplankton (cells 2–20 μm) were the numerically abundant size group of biomineralizing phytoplankton across the GCB, the coccolithophore Emiliania huxleyi and the diatoms Fragilariopsis nana, F. pseudonana and Pseudonitzschia sp. were the most dominant and widely distributed species. A combination of SST, macro-nutrient concentrations and pCO2 were the best statistical descriptors of biogeographic variability of biomineralizing species composition between stations. Emiliania huxleyi occurred in the silicic acid-depleted waters between the Sub-Antarctic Front and the Polar Front, indicating a favorable environment for this coccolithophore in the GCB after spring diatom blooms remove silicic acid to limiting levels. After full consideration of variability in carbonate chemistry and temperature on the distribution of nanoplankton in the GCB, we find that temperature remains the dominant driver of biogeography in a large proportion of the modern Southern Ocean.

2017 ◽  
Vol 14 (21) ◽  
pp. 4905-4925 ◽  
Author(s):  
Helen E. K. Smith ◽  
Alex J. Poulton ◽  
Rebecca Garley ◽  
Jason Hopkins ◽  
Laura C. Lubelczyk ◽  
...  

Abstract. The Great Calcite Belt (GCB) of the Southern Ocean is a region of elevated summertime upper ocean calcite concentration derived from coccolithophores, despite the region being known for its diatom predominance. The overlap of two major phytoplankton groups, coccolithophores and diatoms, in the dynamic frontal systems characteristic of this region provides an ideal setting to study environmental influences on the distribution of different species within these taxonomic groups. Samples for phytoplankton enumeration were collected from the upper mixed layer (30 m) during two cruises, the first to the South Atlantic sector (January–February 2011; 60° W–15° E and 36–60° S) and the second in the South Indian sector (February–March 2012; 40–120° E and 36–60° S). The species composition of coccolithophores and diatoms was examined using scanning electron microscopy at 27 stations across the Subtropical, Polar, and Subantarctic fronts. The influence of environmental parameters, such as sea surface temperature (SST), salinity, carbonate chemistry (pH, partial pressure of CO2 (pCO2), alkalinity, dissolved inorganic carbon), macronutrients (nitrate + nitrite, phosphate, silicic acid, ammonia), and mixed layer average irradiance, on species composition across the GCB was assessed statistically. Nanophytoplankton (cells 2–20 µm) were the numerically abundant size group of biomineralizing phytoplankton across the GCB, with the coccolithophore Emiliania huxleyi and diatoms Fragilariopsis nana, F. pseudonana, and Pseudo-nitzschia spp. as the most numerically dominant and widely distributed. A combination of SST, macronutrient concentrations, and pCO2 provided the best statistical descriptors of the biogeographic variability in biomineralizing species composition between stations. Emiliania huxleyi occurred in silicic acid-depleted waters between the Subantarctic Front and the Polar Front, a favorable environment for this species after spring diatom blooms remove silicic acid. Multivariate statistics identified a combination of carbonate chemistry and macronutrients, covarying with temperature, as the dominant drivers of biomineralizing nanoplankton in the GCB sector of the Southern Ocean.


Polar Biology ◽  
2014 ◽  
Vol 37 (6) ◽  
pp. 891-895
Author(s):  
L. Nøttestad ◽  
B. A. Krafft ◽  
H. Søiland ◽  
G. Skaret

2021 ◽  
Author(s):  
Elise Droste ◽  
Melchor González Dávila ◽  
Juana Magdalena Santana Casiano ◽  
Mario Hoppema ◽  
Gerd Rohardt ◽  
...  

<p>Tides have a large impact on coastal polynyas around Antarctica. We investigate the effect of semi-diurnal tidal cycles on the seawater carbonate chemistry in a coastal polynya hugging the Ekström Ice Shelf in the south-eastern Weddell Sea. This region experiences some of the strongest tides in the Southern Ocean. We assess the implications for the contribution of coastal polynyas to the carbon dioxide (CO<sub>2</sub>) air-sea flux of the Weddell Sea.</p><p>Two site visits, in January 2015 and January 2019, are intercompared in terms of the dissolved inorganic carbon (DIC) concentration, total alkalinity, pH, and CO<sub>2</sub> partial pressure (pCO<sub>2</sub>). The tides induce large variability in the carbonate chemistry of the coastal polynya in the austral summer: DIC concentrations vary between 2174 and 2223 umol kg<sup>-1</sup>.</p><p>The tidal fluctuation in the DIC concentration can swing the polynya from a sink to a source of atmospheric CO<sub>2 </sub>on a semi-diurnal timescale. We attribute these changes to the mixing of different water masses. The amount of variability induced by tides depends on – and is associated with – large scale oceanographic and biogeochemical processes that affect the characteristics and presence of the water masses being mixed, such as the rate of sea ice melt.</p><p>Sampling strategies in Antarctic coastal polynyas should always take tidal influences into account. This would help to reduce biases in our understanding of how coastal polynyas contribute to the CO<sub>2</sub> uptake by the Southern Ocean.</p>


1983 ◽  
Vol 53 (4) ◽  
pp. 291-312 ◽  
Author(s):  
David G Smith ◽  
Michael T Ledbetter ◽  
Paul F Ciesielski

2020 ◽  
Vol 163 ◽  
pp. 103347
Author(s):  
Claire Godet ◽  
Marine Robuchon ◽  
Boris Leroy ◽  
Cédric Cotté ◽  
Alberto Baudena ◽  
...  

2016 ◽  
Vol 13 (16) ◽  
pp. 4843-4861 ◽  
Author(s):  
Xiaobo Jin ◽  
Chuanlian Liu ◽  
Alex J. Poulton ◽  
Minhan Dai ◽  
Xianghui Guo

Abstract. Coccolithophore contributions to the global marine carbon cycle are regulated by the calcite content of their scales (coccoliths) and the relative cellular levels of photosynthesis and calcification rates. All three of these factors vary between coccolithophore species and with response to the growth environment. Here, water samples were collected in the northern basin of the South China Sea (SCS) during summer 2014 in order to examine how environmental variability influenced species composition and cellular levels of calcite content. Average coccolithophore abundance and their calcite concentration in the water column were 11.82 cells mL−1 and 1508.3 pg C mL−1, respectively, during the cruise. Water samples can be divided into three floral groups according to their distinct coccolithophore communities. The vertical structure of the coccolithophore community in the water column was controlled by the trophic conditions, which were regulated by mesoscale eddies across the SCS basin. The evaluation of coccolithophore-based calcite in the surface ocean also showed that three key species in the SCS (Emiliania huxleyi, Gephyrocapsa oceanica, Florisphaera profunda) and other larger, numerically rare species made almost equal contributions to total coccolith-based calcite in the water column. For Emiliania huxleyi biometry measurements, coccolith size positively correlated with nutrients (nitrate, phosphate), and it is suggested that coccolith length is influenced by light and nutrients through the regulation of growth rates. Larger-sized coccoliths were also linked statistically to low pH and calcite saturation states; however, it is not a simple cause and effect relationship, as carbonate chemistry was strongly co-correlated with the other key environmental factors (nutrients, light).


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Julia Gottschalk ◽  
Elisabeth Michel ◽  
Lena M. Thöle ◽  
Anja S. Studer ◽  
Adam P. Hasenfratz ◽  
...  

AbstractPast changes in ocean 14C disequilibria have been suggested to reflect the Southern Ocean control on global exogenic carbon cycling. Yet, the volumetric extent of the glacial carbon pool and the deglacial mechanisms contributing to release remineralized carbon, particularly from regions with enhanced mixing today, remain insufficiently constrained. Here, we reconstruct the deglacial ventilation history of the South Indian upwelling hotspot near Kerguelen Island, using high-resolution 14C-dating of smaller-than-conventional foraminiferal samples and multi-proxy deep-ocean oxygen estimates. We find marked regional differences in Southern Ocean overturning with distinct South Indian fingerprints on (early de-)glacial atmospheric CO2 change. The dissipation of this heterogeneity commenced 14.6 kyr ago, signaling the onset of modern-like, strong South Indian Ocean upwelling, likely promoted by rejuvenated Atlantic overturning. Our findings highlight the South Indian Ocean’s capacity to influence atmospheric CO2 levels and amplify the impacts of inter-hemispheric climate variability on global carbon cycling within centuries and millennia.


1996 ◽  
Vol 8 (4) ◽  
pp. 343-348 ◽  
Author(s):  
Jury A. Rudjakov

The distribution of annual mean biomass of mesozooplankton (animals in the size range 0.2–20 mm) in the upper layer (0–100 m) of the Atlantic sector of the Southern Ocean was mapped. The map was constructed from 4216 measurements at 2184 oceanographic stations, from the Russian and Brazilian archive records, from published sources, and from the British Oceanographic Data Centre. The annual mean mesozooplankton biomass value for the South Atlantic is estimated in this study to be 93 mg m−3 wet weight.


2013 ◽  
Vol 6 (2) ◽  
pp. 621-639
Author(s):  
U. Schuster ◽  
A. J. Watson ◽  
D. C. E. Bakker ◽  
A. M. de Boer ◽  
E. M. Jones ◽  
...  

Abstract. Water column dissolved inorganic carbon and total alkalinity were measured during five hydrographic sections in the Atlantic Ocean and Drake Passage. The work was funded through the Strategic Funding Initiative of the UK's Oceans2025 programme, which ran from 2007 to 2012. The aims of this programme were to establish the regional budgets of natural and anthropogenic carbon in the North Atlantic, the South Atlantic, and the Atlantic sector of the Southern Ocean, as well as the rates of change of these budgets. This paper describes the dissolved inorganic carbon and total alkalinity data collected along east-west sections at 55–60° N (Arctic Gateway), 24.5° N, and 24° S in the Atlantic and across two Drake Passage sections. Other hydrographic and biogeochemical parameters were measured during these sections, yet are not covered in this paper. Over 95% of samples taken during the 24.5° N, 24° S, and the Drake Passage sections were analysed onboard and subjected to a 1st level quality control addressing technical and analytical issues. Samples taken during Arctic Gateway were analysed and subjected to quality control back in the laboratory. Complete post-cruise 2nd level quality control was performed using cross-over analysis with historical data in the vicinity of measurements, and data are available through the Carbon Dioxide Information Analysis Center (CDIAC) and are included in the Global Ocean Data Analyses Project, version 2 (GLODAP 2).


Sign in / Sign up

Export Citation Format

Share Document